Cho x , y ≥ 0 thỏa mãn x + y = 4. Tìm giá trị lớn nhất của biểu thức S = x 3 − 1 y 3 − 1
A. max S = 49
B. max S = 1
C. max S = 1 3
D. max S = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
\(P=\dfrac{3}{x}+\dfrac{1}{3y}=\dfrac{3}{x}+\dfrac{\dfrac{1}{3}}{y}\ge\dfrac{\left(\sqrt{3}+\dfrac{1}{\sqrt{3}}\right)^2}{x+y}=\dfrac{\dfrac{16}{3}}{\dfrac{4}{3}}=4\)
\(min_P=4\Leftrightarrow x=1;y=\dfrac{1}{3}\)
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)
\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)
\(\Rightarrow x^2y^3\le\frac{108}{3125}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...
Ta có y= 3-x≥ 1 nên x≤ 2 do đó : x
Khi đó P= x3+ 2( 3-x) 2+ 3x2+4x( 3-x) -5x= x3+x2-5x+18
Xét hàm số f(x) = x3+x2-5x+18 trên đoạn [0 ; 2] ta có:
f ' ( x ) = 3 x 2 + 2 x - 5 ⇒ f ' ( x ) = 0 x ∈ ( 0 ; 2 ) ⇔
F(0) =18; f(1) = 15; f(2) =20
Vậy giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P lần lượt bằng 20 và 15.
Chọn B.
Đáp án A
Ta có
S = x 3 y 3 − x 3 + y 3 + 1 = x 3 y 3 − x + y − 3 x y x + y + 1 x y 3 + 12 x y − 63 → t = x y f t = t 3 + 12 t − 63 D o x+y ≥ 2 x y ⇒ x y ≤ 4 ⇒ t ≤ 4 ⇒ M ax 0 ≤ t ≤ 4 f t = f 4 = 49