Cho hàm số y = x 3 + 3 x 2 + m có đồ thị (C). Để đồ thị cắt trục hoành tại 3 điểm A , B , C sao cho C là trung điểm của AC thì giá trị tham số m là:
A. m=-2
B. m=0
c. m=-4
D. -4<m<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
08/08/2016 lúc 06:17
http://olm.vn/hoi-dap/question/169893.html
giúp mình gải bài toán ở link này với
a: Bạn bổ sung đề đi bạn
b: thay x=-3 và y=0 vào (d), ta được:
\(-3\left(2m+1\right)-m+3=0\)
=>-6m-3-m+3=0
=>-7m=0
=>m=0
d: y=(2m+1)x-m+3
=2mx+x-m+3
=m(2x-1)+x+3
Tọa độ điểm cố định mà (1) luôn đi qua là:
\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5
a: Thay x=-1 và y=2 vào (d), ta được:
\(-\left(m-2\right)+n=2\)
=>-m+2+n=2
=>-m+n=0
=>m-n=0(1)
Thay x=3 và y=-4 vào (d), ta được:
\(3\left(m-2\right)+n=-4\)
=>3m-6+n=-4
=>3m+n=2(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)
b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:
\(0\left(m-2\right)+n=1-\sqrt{2}\)
=>\(n=1-\sqrt{2}\)
Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)
Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:
\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)
=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)
=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)
=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)
c: 2y+x-3=0
=>2y=-x+3
=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)
Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì
\(-\dfrac{1}{2}\left(m-2\right)=-1\)
=>m-2=2
=>m=4
Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)
Thay x=1 và y=3 vào y=2x+n, ta được:
\(n+2\cdot1=3\)
=>n+2=3
=>n=1
d: 3x+2y=1
=>\(2y=-3x+1\)
=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)
Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì
\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)
Thay x=1 và y=2 vào (d), ta được:
\(n-\dfrac{3}{2}=2\)
=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)