Tìm n thuộc Z biết : n2 + 7n + 14 chia hết cho n + 3
các bạn giải thích rõ ràng hộ mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n + 1 chia hết cho n - 3 <=> n + n - 3 - 3 + 7 chia hết cho n - 3
<=> ( n - 3 ) + ( n - 3 ) + 7 chia hết cho n - 3
Vì n - 3 chia hết cho n - 3 . Để ( n - 3 ) + ( n - 3 ) + 7 chia hết cho n - 3 <=> 7 chia hết cho n - 3
=> n - 3 \(\in\) Ư ( 7 )
=> Ư ( 7 ) = { +1 ; +7 }
Ta có : n - 3 = 1 => n = 4 ( TM )
n - 3 = - 1 => n = - 2 ( TM )
n - 3 = 7 => n = 10 ( TM )
n - 3 = - 7 => n = - 4 ( TM )
Vậy n = { +4 ; - 2 ; 10 }
a, n2 + 2n + 4 chia hết cho n+1
=> n(n+1)+n+4 chia hết cho n+1
=> n(n+1)+n+1+3 chia hết cho n+1
=> (n+1).(n+1)+3 chia hết cho n+1
Vì (n+1)(n+1) chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc Ư(3)
=> n+1 thuộc {1; -1; -3; 3}
Mà n thuộc N
=> n thuộc {0; 2}
b, 2n2 + 10n + 20 chia hết cho 2n+3
n(2n+3)+7n+20 chia hết cho 2n+3
Vì n(2n+3) chia hết cho 2n+3
=> 7n+20 chia hết cho 2n+3
=> 14n+40 chia hết cho 2n+3
=> 14n+21+19 chia hết cho 2n+3
=> 7.(2n+3)+19 chia hết cho 2n+3
Vì 7.(2n+3) chia hết cho 2n+3
=> 19 chia hết cho 2n+3
=> 2n+3 thuộc Ư(19)
=> 2n+3 thuộc {1; -1; 19; -19}
=> 2n thuộc {-2; -4; 16; -22}
Mà n thuộc N
=> n = 8
a, n+ 8 chia hết cho n + 3
=> n+ 8 -( n+3) chia hết cho n+ 3
=> 5 chia hết cho n+3
=> n+3 thuộc ước của 5
......
đến đây cậu tự tìm n nhé
b, 2n - 5 chia hết cho n-3
=> 2n -5 - 2n + 6 chia hết cho n- 3 ( nhân n-3 với 2 )
=> 1 chia hết cho n- 3
=> n-3 thuộc ước của 1
....
c,d làm tương tự nhé
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
326 tich nhae
{-19;-11;-5;-4;-2;-1;5;13} , nha ban