K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

22 tháng 9 2019

Đáp án C

NV
22 tháng 5 2021

\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)

Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)

\(A=x_1x_2-2\left(x_1+x_2\right)\)

\(A=m^2-m+2-4m\)

\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)

\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)

6 tháng 1 2019

Đáp án B

7 tháng 8 2023

\(y=\left(m^2-9\right)x+8m\left(1\right)\)

\(a,A\left(0;8\right)\in y=\left(m^2-9\right)x+8m\)

\(\Rightarrow x=0;y=8\)

Thay \(x=0;y=8\) vào \(\left(1\right)\), ta được : \(8=\left(m^2-9\right).0+8m\Rightarrow8m=8\Rightarrow m=1\)
\(b,\) Hàm số trên nghịch biến \(\Leftrightarrow a< 0\Leftrightarrow m^2-9< 0\Leftrightarrow\left(m-3\right)\left(m+3\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-3< 0\\m+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-3>0\\m+3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 3\\m>-3\end{matrix}\right.\\\left\{{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\end{matrix}\right.\)

\(c,\) Hàm số trên qua \(B\left(x_B;y_B\right)\) có hoành độ = 1 \(\Rightarrow x_B=1,y_B=0\)

\(\Rightarrow0=\left(m^2-9\right).1+8.1\Rightarrow m^2-9+8=0\Rightarrow m^2=1\)

\(\Rightarrow\left[{}\begin{matrix}m=-1\\m=1\end{matrix}\right.\)

Mình xin phép sửa lại câu b của bạn Thư một chút nha:

b: Để hàm số nghịch biến thì m^2-9<0

=>(m-3)(m+3)<0

=>-3<m<3

Để đây làpt bậc nhất 1 ẩn thì m^2-4=0 và m-2<>0

=>m=-2

Để A giao B bằng rỗng thì m<m+2 và 7<m+2

=>m+2>7

=>m>5

=>Để A giao B khác rỗng thì m<=5