Có tất cả bao nhiêu giá trị nguyên của m để hàm y = x + m m x + 4 đồng biến trên từng khoảng xác định?
A. 2
B. 4
C. 3
D. 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có: y ' = 4 − m 2 m x + 4 2 . Hàm số đồng biến trên từng khoảng xác định y ' > 0 ⇒ 4 − m 2 > 0 ⇔ − 2 < m < 2 , m ∈ ℤ ⇒ m ∈ − 1 ; 0 ; 1 .
Ta có
y ' = 4 − m 2 x + 4 2 > 0 ⇒ 4 − m 2 ⇔ − 2 < m < 2 ; m ∈ ℤ ⇒ m ∈ − 1 ; 0 ; 1
a: ĐKXĐ: x<>m
=>TXĐ: D=R\{m}
\(y=\dfrac{mx-2m-3}{x-m}\)
=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)
\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)
\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)
=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)
=>\(-m^2+2m+3>0\)
=>\(m^2-2m-3< 0\)
=>(m-3)(m+1)<0
TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)
=>\(m\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)
=>-1<m<3
b: TXĐ: D=R\{m}
\(y=\dfrac{mx-4}{x-m}\)
=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)
\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)
\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)
=>\(-m^2+4>0\)
=>\(-m^2>-4\)
=>\(m^2< 4\)
=>-2<m<2
Đáp án C
Ta có y ' = m ( m + 1 ) ( m - x ) 2 Hàm số đồng biến trên khoảng xác định của nó ⇔ m ( m + 1 ) > 0 ⇒ m > 0 m < - 1
Đáp án A
Ta có y ' = − m + 1 x − 1 2
hàm số đồng biến trên từng khoảng xác định của nó ⇔ y ' > 0 ⇔ − m − 1 > 0 ⇔ m < − 1
Đáp án C