K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2016

-(y-x)*(z-x)*(z-y)*(z^2+y*z+x*z+y^2+x*y+x^2)

31 tháng 1 2016

\(\left(x-y\right)\left(z-x\right)\left(z-y\right)\left(z^2+yz+xz+y^2+xy+x^2\right)\)vay ms dung

22 tháng 12 2022

`x^4+x^2 y^2+y^4`

`=x^4+2x^2 y^2 +y^4-x^2 y^2`

`=(x^2+y^2)^2-(xy)^2`

`=(x^2-xy+y^2)(x^2+xy+y^2)`

15 tháng 12 2023

\(\left(x+y+z\right)^3-x-y-z\\ =\left(x+y+z\right)^3-\left(x+y+z\right)\\ =\left(x+y+z\right)\left(\left(x+y+z\right)^2-1\right)\\ =\left(x+y+z\right)\left(x+y+z-1\right)\left(x+y+z+1\right)\)

20 tháng 10 2021

Đặt \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=x+z\end{matrix}\right.\Leftrightarrow x+y+z=\dfrac{a+b+c}{2}\)

\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\\ =8\left(\dfrac{a+b+c}{2}\right)^3-a^3-b^3-c^3\\ =\left(a+b+c\right)^3-a^3-b^3-c^3\\ =\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-\left(a+b\right)^3+3ab\left(a+b\right)-c^3\\ =3\left(a+b\right)\left(ac+bc+c^2+ab\right)\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\\ =3\left(x+y+y+z\right)\left(y+z+z+x\right)\left(z+x+x+y\right)\\ =3\left(x+2y+z\right)\left(x+y+2z\right)\left(2x+y+z\right)\)

24 tháng 10 2023

 

Với điều kiện x + y + z = 0, ta có thể giả sử x = a, y = -a và z = 0, với -1 ≤ a ≤ 1.

Thay các giá trị vào đa thức, ta có:

x^2 + y^4 + z^4 = a^2 + (-a)^4 + 0^4 = a^2 + a^4.

Để tìm giá trị nhỏ nhất của đa thức này, ta xét đạo hàm của nó theo a:

f'(a) = 2a + 4a^3

Để tìm điểm cực tiểu, ta giải phương trình f'(a) = 0:

2a + 4a^3 = 0 a(1 + 2a^2) = 0

Vì -1 ≤ a ≤ 1, nên ta có hai giá trị a = 0 và a = ±1/√2.

Ta tính giá trị của đa thức tại các điểm cực tiểu:

f(0) = 0^2 + 0^4 = 0

f(1/√2) = (1/√2)^2 + (1/√2)^4 ≈ 0.8536

f(-1/√2) = (-1/√2)^2 + (-1/√2)^4 ≈ 0.8536

Như vậy, giá trị nhỏ nhất của đa thức là khoảng 0.8536, lớn hơn 2. Do đó, ta có thể kết luận rằng đa thức x^2 + y^4 + z^4 có giá trị k lớn hơn 2.