Cho hàm số f(x) có đạo hàm f ' x trên khoảng K, đồ thị hàm số f ' x trên khoảng K như hình vẽ. Hàm số có bao nhiêu cực trị?
A. 0
B. 1
C. 4
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Phương pháp:
Từ đồ thị hàm số của f'(x) ta lập bảng biến thiên, từ đó xác định điểm cực trị của hàm số.
Hoặc ta sử dụng cách đọc đồ thị hàm số f'(x)
Số giao điểm của đồ thị hàm số f'(x) với trục hoành bằng số điểm cực trị của hàm số f'(x). (không tính các điểm tiếp xúc)
Nếu tính từ trái sang phải đồ thị hàm số f''=(x) cắt trục hoành theo chiều từ trên xuống thì đó là điểm cực đại của hàm số f(x).
Nếu tính từ trái sang phải đồ thị hàm số f'(x) cắt trục hoành theo chiều từ trên xuống thì đó là điểm cực tiểu của hàm số f(x).
Cách giải:
Từ đồ thị hàm số f'(x) ta thấy có một giao điểm với trục hoành (không tính điểm tiếp xúc) nên hàm số f(x) có một cực trị.
Dựa vào đồ thị ta thấy phương trình chỉ có một nghiệm đơn và hai nghiệm kép nên chỉ đổi dấu khi qua nghiệm đơn này.
Do đó suy ra hàm số f(x) có đúng một cực trị.
Chọn A.
Dựa vào đồ thị ta thấy phương trình có ba nghiệm đơn và đổi dấu khi qua nghiệm đơn này.
Do đó suy ra hàm số có ba điểm cực trị.
Chọn C.
Đáp án A
Phương trình f ' (x) = 0 có 3nghiệm,trong đó có 2 nghiệm kép do tiếp xúc. Dạng phương trình f ' ( x ) = x - x 1 2 x - x 2 . Do đó hàm số y = f(x) có duy nhất một điểm cực trị.
Chọn B
+ Với x= - 1: ta có : f’ (-1) = 0
Giá trị của hàm số y= f’(x) đổi dấu từ âm sang dương khi qua x= -1
=> Hàm số y= f(x) đạt cực tiểu tại điểm x= -1
+ Tại điểm x=0 hoặc x= 2
- Đạo hàm tại 2 điểm đó bằng 0.
- Giá trị của hàm số y= f’(x) không đổi dấu khi đi qua điểm đó. Nên x= 0; x= 2 không là điểm cực trị của hàm số