Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(1;0;0), B(0;0;1) và C(2;1;1). Tìm tổng tọa độ trực tâm H của tam giác ABC.
A. 1
B. 2
C. 0
D. Không có điểm H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi D là chân đường phân giác góc B của tam giác ABC . Theo tính chất đường phân giác ta có :
Từ (*) ta có, điểm D chia đoạn thẳng AC theo tỷ số k nên D có toạ độ
Đáp án A.
Ta có:
G = 2 + 3 + 1 3 ; − 1 + 5 + 2 3 ; 3 + − 1 + 7 3 = 2 ; 2 ; 3 .
Chú ý: Trong không gian Oxyz, cho tam giác ABC. Khi đó trọng tâm G của tam giác có tọa độ là x A + x B + x C 3 ; y A + y B + y C 3 ; z A + z B + z C 3
Đáp án A
Gọi D là chân đường phân giác góc B của Δ A B C . Theo tính chất đường phân giác ta có : D A A B = D C B C ⇒ D A → = − A B B C . D C → *
Với A B → = 1 ; − 3 ; 4 ⇒ A B = 26 và B C → = − 6 ; 8 ; 2 ⇒ B C = 104
k = − A B B C = − 1 2
Từ (*) ta có, điểm D chia đoạn thẳng AC theo tỷ số k nên D có toạ độ x D = x A − k x C 1 − k = − 2 3 y D = y A − k y C 1 − k = 11 3 z D = z A − k z C 1 − k = 1 ⇒ D − 2 3 ; 11 3 ; 1
Đáp án A
- Cách 1: Giả sử H(x;y;z) là trực tâm của tam giác ABC, ta có điều kiện sau:
Do nhận xét được AB → . AC → = 0 ⇒ AB → ⊥ AC → nên ta tìm được cách giải độc đáo sau:
- Cách 2: Vì tam giác ABC vuông tại A nên trực tâm H của tam giác ABC trùng với điểm A
- Lời giải chi tiết cho cách 2: AB → = − 1 ; 0 ; 1 ; AC → = 1 ; 1 ; 1 , nhìn nhanh thấy
AB → . AC → = 0 ⇒ AB ⊥ AC nên tam giác ABC vuông tại A và A là trực tâm