Cho nửa đường tròn tâm ô đường kính AB và điểm M bất kì trên nửa đường tròn (M khác A, . Trên mặt phẳng bờ AB chứa nửa đường tròn kết tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K a) CMR: EFMK là tứ giác nội tiếp b) CMR: AI^2 = IM.IB c) CM BAF là tam giác cân d) CMR: tứ giác AKFH là hình thoi e) xác định vị trí M để tứ giác AKFI nội tiếp được một đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Vì A,E,M,B cùng nằm trên (O)
nên AEMB nội tiếp
góc AMB=1/2*180=90 độ
=>AM vuông góc IB
ΔIAB vuông tại A có AM vuông góc IB
nên IA^2=IM*IB
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi
a: góc BEA=1/2*180=90 độ
góc KEF+góc KMF=180 độ
=>KEFM nội tiếp
b: góc FAB=góc FAM+góc BAM
=1/2*góc IAM+góc BAM
=1/2*(1/2*sđ cung AM+sđ cung MB)
=1/2(1/2*sđ cung AM+180 độ-sđ cung AM)
=1/2(180 độ-1/2*sđ cung AM)
=90 độ-góc FAM
góc BFA=90 độ-góc FAM
=>góc BAF=góc BFA
=>ΔBAF cân tại B
a: góc BEA=1/2*180=90 độ
góc KEF+góc KMF=180 độ
=>KEFM nội tiếp
b: góc FAB=góc FAM+góc BAM
=1/2*góc IAM+góc BAM
=1/2*(1/2*sđ cung AM+sđ cung MB)
=1/2(1/2*sđ cung AM+180 độ-sđ cung AM)
=1/2(180 độ-1/2*sđ cung AM)
=90 độ-góc FAM
góc BFA=90 độ-góc FAM
=>góc BAF=góc BFA
=>ΔBAF cân tại B
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi