Có bao nhiêu giá trị nguyên của tham số m để phương trình m + 3 m + 3 sin x 3 3 = sin x có nghiệm thực?
A. 5
B. 4
C. 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.
Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Đáp án A
*Phương trình m + 3 m + 3 sin x 3 3 = sin x ⇔ m + 3 m + 3 sin x 3 = sin 3 x
⇔ ( m + 3 sin x ) + 3 m + 3 sin x 3 = sin 3 x + 3 sin x ( 1 )
* Xét hàm số f ( t ) = t 3 + 3 t trên ℝ . Ta có f ' ( t ) = 3 t 2 + 3 > 0 ∀ t ∈ ℝ nên hàm số f(t) đồng biến trên ℝ .
Suy ra (1) f 3 + 3 sin x 3 f ( sin x ) ⇔ 3 + 3 sin x 3 = sin x
Đặt sin x = t, t ∈ [ - 1 ; 1 ] Phương trình trở thành t 3 - 3 t = m
* Xét hàm số g(t) trên t ∈ - 1 ; 1 Ta có g ' ( t ) = 3 t 2 - 3 ≤ 0 , ∀ t ∈ [ - 1 ; 1 ] và g ' ( t ) = 0 ⇔ t = ± 1 Suy ra hàm số g(t) nghịch biến trên [-1;1]
* Để phương trình có nghiệm đã cho có nghiệm thực ⇔ Phương trình t 3 - 3 t = m có nghiệm trên [-1;1]
m i n [ - 1 ; 1 ] g ( t ) ≤ m ≤ m a x [ - 1 ; 1 ] g ( t ) ⇔ g ( 1 ) ≤ m ≤ g ( - 1 ) ⇔ - 2 ≤ m ≤ 2
Vậy có 5 giá trị nguyên của m thỏa mãn là m ∈ - 2 ; - 1 ; 0 ; 1 ; 2
Đáp án A
m + 3 m + 3 sin x 3 3 = s inx ⇔ m + 3 m + 3 sin x 3 = sin 3 x X 1 , … , X n ⇔ m + 3 sin x + 3 m + 3 sin x 3 = sin 3 x + 3 sin x ( 1 )