Tìm x biết: |𝑥−2|+|3−2𝑥|=2𝑥+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x^2+6x-2x^2=12\Leftrightarrow6x=12\Leftrightarrow x=2\)
\(2x\left(x+3\right)-2x^2=12\\ \Rightarrow2x\left(x+3-x\right)=12\\ \Rightarrow6x=12\\ \Rightarrow x=2\)
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
1)(x+1)thuộc ước của -2
ư(2)={1;2;-1;-2}
x+1 | 1 | 2 | -1 | -2 |
x | 0 | 1 | -2 | -3 |
vậy x =0;x=1;x=-2;x=-3
2)ta có : 2x+7=2(x+3)+1
2(x+3)chia hết cho x+3
=>để 2x+7chia hết cho x+3
<=>1chia hết cho x+3
=>x+3 thuộc ư(1)
u(1)={1;-1}
x+3 | 1 | -1 |
2 | -2 | -4 |
vậy x=-2;x=-4
a.A= \(\frac{7}{2x-3}\)
Vì 7 thuộc Z nên để x là số nguyên => 7/2x-3 thuộc Z
=> 2x-3 thuộc Ư(7)={1;-1;7;-7}
2x-3 | 1 | -1 | 7 | -7 |
x | 2 | 1 | 5 | -2 |
(tm)
Vậy...
b) \(B=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)}{x-1}+\frac{3}{x-1}=2+\frac{3}{x-1}\)
Vì 2 thuộc Z nên để x là số nguyên => 3/x-1 thuộc Z
=> x-1 thuộc Ư(3)={-1;1;-3;3}
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
(tm)
Vậy....
c) C=5/x^2-3
Vì 5 thuộc Z nên để x là số nguyên => x^2-3thuộc Z
=> x^2-3 thuộc Ư(5)={1;-1;5;-5}
x^2-3 | 1 | -1 | 5 | -7 |
x | +2 | căn 2 (k/tm) | căn 8 (k/tm) | căn 10 (k/tm) |
Vậy x thuộc 2 hoặc -2
\(\Leftrightarrow2x^2-x-2x^2-6x=8\\ \Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)
a) \(\sqrt{x}=3\left(x\ge0\right)\Leftrightarrow x=9\)
b) \(\sqrt{x}=\sqrt{5}\left(x\ge0\right)\Leftrightarrow x=5\)
c) \(\sqrt{x}=0\left(x\ge0\right)\Leftrightarrow x=0\)
d) \(\sqrt{x}=-2\left(x\ge0\right)\Leftrightarrow x=\varnothing\)
e) \(\sqrt{x-2}=3\left(x\ge0\right)\Leftrightarrow x-2=9\Leftrightarrow x=11\)
g) \(\sqrt{2x-1}=5\left(x\ge0\right)\Leftrightarrow2x-1=25\Leftrightarrow2x=26\Leftrightarrow x=13\)
h) \(\sqrt{x-3}=0\left(x\ge0\right)\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a: \(\sqrt{x}=3\)
nên x=9
b: \(\sqrt{x}=\sqrt{5}\)
nên x=5
c: \(\sqrt{x}=0\)
nên x=0
d: \(\sqrt{x}=-2\)
nên \(x\in\varnothing\)
e: \(\sqrt{x}-2=3\)
\(\Leftrightarrow\sqrt{x}=5\)
hay x=25
g: \(\sqrt{2x}-1=5\)
\(\Leftrightarrow2x=36\)
hay x=18
h: Ta có: \(\sqrt{x}-3=0\)
nên x=9