K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

Số n nhỏ nhất là :1

30 tháng 1 2016

số n nhỏ nhất là 1

mình nha

15 tháng 2 2016

n2 + 5n + 1 = n ( n + 5 ) + 1

Với n \(\\ \in \) N thì n + 5 > 1

=> n2 + 5n + 1 thì n = 1

15 tháng 2 2016

thử từng trường hợp 1,2,3 , 3k,3k+1,3k+2

13 tháng 1 2021

Bài 1 

a, 

Gọi d là ƯCLN(6n+5;4n+3)

\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\) 

\(\Rightarrow12n+10-\left(12n+9\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1 

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau 

b, Vì số nguyên dương nhỏ nhất là số 1 

=> x+ 2016 = 1 

=> x= 1-2016 

x= - 2015

13 tháng 1 2021

Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)

\(6n+5⋮d\Rightarrow12n+10⋮d\)

\(4n+3⋮d\Rightarrow12n+9⋮d\)

Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)

Vậy ta có đpcm 

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2
30 tháng 3 2019

\(n^3-4n^2+4n-1\)

\(=\left(n^3-1\right)-\left(4n^2-4n\right)\)

\(=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2-3n+1\right)\)

Ta có: \(n^3-4n^2+4n-1=\left(n-1\right)\left(n^2-3n+1\right)\)

nên sẽ phải có 1 số trong tích trên bằng 1 và 1 số bằng chính snt đó

\(\Rightarrow\orbr{\begin{cases}n-1=1\\n\left(n-3\right)=0\end{cases}}\)

Các giá trị trên ko thỏa để n là snt

=> ko có giá trị n cần tìm

4 tháng 3 2017

n^2 + 3n - 13 chia hết cho n + 3

<=> n.(n + 3) - 13 chia hết cho n + 3

mà n. ( n + 3 )

=> 13 chia hết cho n + 3

=> n + 3 thuộc W ( 13 ) = { - 13; -1; 1 ; 13 }

=> n thuộc { -16; -4; -2; 10 }

Vậy GTNN của n là - 16.

6 tháng 3 2017

mình k rồi đó