a. tìm số nguyên tố p sao cho q + 74 và q + 1994 là các số nguyên tố
b. chứng minh rằng hai số lẻ liên tiếp bao giơ cũng nguyên tố cùng nhau
d. chứng minh rằng abcabc chia hết cho 7;11 và 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N)
Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .
Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau! (đpcm)
d)
N = abcabc = abc x 1001 = abc x (7 x 11 x 13)
=> abcabc chia hết cho 7, cho 11 và cho 13 (đpcm)
a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3
b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3
Gọi D là ước số chung của chúng.
Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ
.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!
chúc bạn học tập tốt !!!
p>0=>p+7>7
=>p+7 là số lẻ
=>p chẵn
xét p=2=>p+1994=1996(vô lí)
Vậy không có p
abcabc=abc.1001=abc.7.11.13 chia hết cho 7;11;13
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
c. abcabc=abc.1000+abc=abc.1001
Vì 1001 chia hết cho 7; 11 ;13 nên abcabc chia hết 7;11;13
đi rồi tôi làm tiếp