2.a tìm GTnn của M=x^2-2xy+2y^2-4y+5
Mn làm nhanh hộ mình với. Mai mình phải nạp cho cô rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có :
\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)
Vì \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)
Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1
BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H
H=\(X^2+2XY+Y^2-2X-2Y\)
H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)
H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1
H=\(\left(X+Y-1\right)^2-1\)
VẬY GTNN LÀ -1
50% \(\times\) \(x\) + 16,8 = 3,4 \(\times\) 2 + \(x\)
0,5 \(\times\) \(x\) + 16,8 = 6,8 + \(x\)
6,8 + \(x\) - 0,5 \(\times\) \(x\) = 16,8
6,8 + \(x\) \(\times\) ( 1 -0,5) = 16,8
6,8 + \(x\) \(\times\) 0,5 = 16,8
\(x\) \(\times\) 0,5 = 16,8 - 6,8
\(x\) \(\times\) 0,5 = 10
\(x\) = 10 : 0,5
\(x\) = 20
\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)
e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)
Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)
Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:
\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)
\(M=x^2+2y^2+2xy-2x-3y+1\)
=> \(M=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-3y+1\)
=> \(M=\left(x+y-1\right)^2-y^2+2y-1+2y^2-3y+1\)
=> \(M=\left(x+y-1\right)^2+y^2-y\)
=> \(M=\left(x+y-1\right)^2+y^2-2y\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\)
Có \(\left(x+y-1\right)^2\ge0\)với mọi x, y
\(\left(y-\frac{1}{2}\right)^2\ge0\)với mọi y
=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)với mọi x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-\frac{1}{2}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
KL: Mmin = \(\frac{-1}{4}\)<=> \(x=y=\frac{1}{2}\)
a) \(x-2xy+x=0\Leftrightarrow2x-2xy=0\)
\(\Leftrightarrow2x\left(1-y\right)=0\Leftrightarrow\hept{\begin{cases}2x=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)