K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

\(A=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(=\frac{z\left(y^2-x^2\right)+z^2\left(x-y\right)+xy\left(x-y\right)}{ }=\frac{\left(x-y\right)z\left(z-x-y\right)+xy\left(x-y\right)}{ }=\frac{\left(x-y\right)\left(z^2-xz-yz+xy\right)}{ }=\)

\(=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{ }=1\)

 

19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

16 tháng 3 2018

\(A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)

=> \(\left(-A\right)=\frac{yz}{\left(x-y\right)\left(z-x\right)}+\frac{xz}{\left(x-y\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(y-z\right)}\)

<=> \(\left(-A\right)=\frac{yz\left(y-z\right)+xz\left(z-x\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{y^2z-yz^2+xz^2-x^2z+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

<=> \(\left(-A\right)=\frac{z^2\left(x-y\right)-z\left(x^2-y^2\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)=> \(\left(-A\right)=\frac{\left(x-y\right)\left(z^2-zx-zy+xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y\right)\left[z\left(z-x\right)-y\left(z-x\right)\right]}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(\left(-A\right)=\frac{\left(x-y\right)\left(z-x\right)\left(z-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)

=> A = 1

Đáp số: A=1

16 tháng 8 2017

\(1A=\frac{xy}{\left(z-x\right)\left(z-y\right)}+\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{zx}{\left(y-x\right)\left(y-z\right)}\)

\(=-1\left(\frac{xy}{\left(y-z\right)\left(z-x\right)}+\frac{yz}{\left(x-y\right)\left(z-x\right)}+\frac{zx}{\left(y-z\right)\left(x-y\right)}\right)\)

\(=-1.\left(\frac{xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\right)\)

 \(=\frac{-1\left(x-y\right)\left(z-x\right)\left(z-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

  

5 tháng 7 2019

Xét tích : \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)

=\(x^3\left(z-y\right)+x^2\left(z-y\right)\left(z+y\right)+y^3\left(x-z\right)+y^2\left(x-z\right)\left(x+z\right)\)

\(+z^3\left(y-x\right)+z^2\left(y-x\right)\left(y+x\right)\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2\left(z^2-y^2\right)+y^2\left(x^2-z^2\right)+z^2\left(y^2-x^2\right)\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2z^2-x^2y^2+y^2x^2-y^2z^2+z^2y^2-z^2x^2\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)

Như vậy:

 \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)

<=> \(\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)

Ta có: \(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{xz}+\frac{z\left(y-x\right)}{xy}}\)

 \(=\frac{\frac{x^3\left(z-y\right)}{xyz}+\frac{y^3\left(x-z\right)}{xyz}+\frac{z^3\left(y-x\right)}{xyz}}{\frac{x^2\left(z-y\right)}{xyz}+\frac{y^2\left(x-z\right)}{xyz}+\frac{z^2\left(y-x\right)}{xyz}}\)

\(=\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)

18 tháng 7 2017

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Suy ra : xy + yz + zx = 0 (nhân cả hai vế với xyz)

Khi đó : \(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)

18 tháng 7 2017

Chỉ hộ cho tôi tại sao :

\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)với

Đừng có làm bừa chứ Nguyễn Quang Trung

8 tháng 10 2018

\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{\left(x^2-yz\right).\left(y+z\right)}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}+\frac{\left(y^2-xz\right).\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}+\frac{\left(z^2-xy\right).\left(x+y\right)}{\left(x+z\right)\left(y+z\right)\left(x+y\right)}\)

\(=\frac{x^2y-y^2z+x^2z-yz^2+y^2x-x^2z+zy^2-xz^2+z^2x-x^2y+yz^2-xy^2}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(=\frac{0}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(=0\)\(\left(\text{Đ}K:x+y,y+z,z+x\ne0\right)\)

Tham khảo nhé~