Cho 2 phân số a/b:c/d(b>0:d>0)
Chứng minh: biết a/b<c/d thì a/b<a+2/b+1<c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Bài 1:
a) + Nếu a/b > 1 thì a/b > b/b => a > b
+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)
b) + Nếu a/b < 1 thì a/b < b/b => a < b
+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)
Bài 2:
Do \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)
=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)
bai2
vi a/b > c/d
=>ad/bd >cd/bd
và ad/bd , cd/bd có mẫu chung là bd
<=>ad>cd
+) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow ad< bc\)
( do b, d > 0 )
+) Ta có: \(ad< bc\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\left(b,d>0\right)\)
Để \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) thì \(a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Để \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) thì \(\left(a+c\right).d< \left(b+d\right).c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ab< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Chúc Bạn Học Tốt !!!Đạt nhiều thành tích trong học tập
Xem lại đề nha bạn :\(\dfrac{a}{b},\dfrac{c}{d}\left(b,d>0\right)\) chứ
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có:
a.d<b.c
Chúc bạn học tốt!!!! ^-^
\(Giải\)
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{cb}{db}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\)
\(\Rightarrow\) \(ad< bc\left(1\right)\)
Vì\(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2)=> \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
Nhớ mk nha