K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2016

http://olm.vn/hoi-dap/question/103481.html

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

29 tháng 8 2016

Bài 1: 

a) + Nếu a/b > 1 thì a/b > b/b => a > b

+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)

b) + Nếu a/b < 1 thì a/b < b/b => a < b

+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)

Bài 2: 

Do \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)

=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)

2 tháng 9 2016

bai2

vi a/b > c/d

=>ad/bd >cd/bd

và ad/bd , cd/bd có mẫu chung là bd

<=>ad>cd

24 tháng 8 2017

+) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow ad< bc\)

( do b, d > 0 )

+) Ta có: \(ad< bc\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\left(b,d>0\right)\)

24 tháng 8 2017

Để \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) thì \(a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Để \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) thì \(\left(a+c\right).d< \left(b+d\right).c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ab< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Chúc Bạn Học Tốt !!!Đạt nhiều thành tích trong học tập

Xem lại đề nha bạn :\(\dfrac{a}{b},\dfrac{c}{d}\left(b,d>0\right)\) chứ

7 tháng 7 2016

a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết: 
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì 
b. Hãy viết ba số hữu tỉ xen giữa và 
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có: 

            a.d<b.c

Chúc bạn học tốt!!!! ^-^

              \(Giải\)

Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{cb}{db}\)

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\)

\(\Rightarrow\) \(ad< bc\left(1\right)\) 

\(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

\(\Rightarrow\frac{a}{b}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2)=> \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

Nhớ mk nha