Cho P(x) = x2 + 2mx + 2m2 - 3 và Q(x) = x2 + (2m+1)x + m2
Tìm m biết P(1) = Q(-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)
Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)
= \(m^2-2m+1=\left(m-1\right)^2\)
Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)
Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)
ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT
1) a) Phương trình có x1 và x2 trái dấu
\(\Leftrightarrow2m-4< 0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
b) Phương trình có x1 và x2 cùng dương
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4=0\\2m>0\\2m-4>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\left(BĐTđúng\right)\\m>0\\m>2\end{cases}\Leftrightarrow}m>2}\)
c) Phương trình có x1 và x2 cùng âm
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4>0\\2m< 0\\2m-4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\\m< 0\\m>2\end{cases}\Leftrightarrow0>m>2}\)
P/s: không chắc -.-
PT nhận \(x=1\) là nghiệm
Thay \(x=1\) vào trong PT ta tìm được m:
\(x^2-2mx+2m^2-m-6=0\)
\(\Rightarrow1^2-2\cdot m\cdot1+2m^2-m-6=0\)
\(\Leftrightarrow1-2m+2m^2-m-6=0\)
\(\Leftrightarrow2m^2-3m-5=0\)
\(\Leftrightarrow2m^2+2m-5m-5=0\)
\(\Leftrightarrow2m\left(m+1\right)-5\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(2m-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\2m-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{5}{2}\end{matrix}\right.\)
Vậy PT nhận \(x=1\) là nghiệm khi \(m=-1\) hoặc \(m=\dfrac{5}{2}\)
Thay \(x=1\) vào pt \(x^2-2mx+2m^2-m-6=0\)
\(\Rightarrow1^2-2m.1+2m^2-m-6=0\)
\(\Rightarrow-3m+2m^2-5=0\)
\(\Rightarrow2m^2-3m-5=0\)
\(\Delta=b^2-4ac=\left(-3\right)^2-4.2.\left(-5\right)=49>0\)
\(\Rightarrow\) Pt có 2 nghiệm \(m_1,m_2\)
\(\left\{{}\begin{matrix}m_1=\dfrac{3+\sqrt{49}}{2.2}=\dfrac{5}{2}\\m_2=\dfrac{3-\sqrt{49}}{2.2}=-1\end{matrix}\right.\)
Vậy \(m=\dfrac{5}{2},m=-1\) thì pt có 1 nghiệm \(x=1\)
x2 la x vuong ha