Cho hàm số y = f(x) liên tục trên ℝ \ 1 và có bảng biến thiên như sau:
Đồ thị hàm số y = 1 2 f x - 5 có bao nhiêu đường tiệm cận đứng?
A. 0
B. 2
C. 1
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Số tiệm cận đứng của đồ thị hàm số y = 1 2 f x − 5 là nghiệm phương trình: 2 f x − 5 = 0
Dựa vào bảng biến thiên, ta thấy có 4 nghiệm phân biệt
Vậy đồ thị hàm số đã cho có 4 đường tiệm cận đứng
Đáp án là D
Từ BBT ta có
lim x → + ∞ y = − 1 ; lim x → − ∞ y = 1 do đó đồ thị hàm số có hai đường tiệm cận ngang là
y = 1; y =−1.
lim x → 1 − y = + ∞ ; lim x → 1 − y = − ∞ do đó đồ thị hàm số có một đường tiệm cận đứng là x =1. Vậy tổng số có 3 đường tiệm cận
Chọn C
Từ bảng biến thiên ta thấy l i m x → + ∞ y = 5 ; l i m x → ∞ y = 3 đồ thị hàm số có hai đường tiệm cận ngang là y=5 và y=3. Và l i m x → 1 - y = - ∞ ⇒ x = 1 là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có tất cả là ba đường tiệm cận
Chọn C.
Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.
Đáp án là D