Tìm X biết (1/1x101+1/2x102+...+1/10x110)xX=1/1x11+1/2x12+...+1/100x110)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=\(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{25.125}\)
=\(\frac{1}{100}\left(\frac{100}{1.101}+\frac{100}{2.102}+...+\frac{100}{25.125}\right)\)
=\(\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{25}-\frac{1}{125}\right)\)
=\(\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)
B=\(\frac{1}{1.26}+\frac{1}{2.27}+...+\frac{1}{100.125}\)
=\(\frac{1}{25}\left(\frac{25}{1.26}+\frac{25}{2.27}+...+\frac{25}{100.125}\right)\)
=\(\frac{1}{25}\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{100}-\frac{1}{125}\right)\)
=\(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{125}\right)\right]\)
=\(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)
= \(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)
=> \(\frac{A}{B}\)=\(\frac{\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]}{\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]}\)=\(\frac{1}{\frac{100}{\frac{1}{25}}}\)=\(\frac{1}{100}\cdot25=\frac{25}{100}=\frac{1}{4}\)
A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{125}\)
1+1+1+1+1+1+1+1+1+1+1+1x101
= 1+1+1+1+1+1+1+1+1+1+1 + 101
= 11 + 101
= 112 .