Cho hình chóp SABD có tam giác ABC vuông tại A, AB=2a, AC=3a, SA vuông góc với đáy và SA=a. Thể tích khối chóp SABC bằng
A. 2 a 3
B. 6 a 3
C. 3 a 3
D. a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=\sqrt{AB^2+AC^2}=2a\)
Gọi M là trung điểm BC \(\Rightarrow AM=\dfrac{1}{2}BC=a\)
GỌi N là trung điểm SA \(\Rightarrow AN=\dfrac{1}{2}SA=a\)
Dựng hình chữ nhật AMIN \(\Rightarrow\) I là tâm mặt cầu ngoại tiếp
\(R=IA=\sqrt{AM^2+AN^2}=a\sqrt{2}\)
\(\Rightarrow V=\dfrac{4}{3}\pi R^3=...\)
Ủa cái a căn 2(6) phải dịch thế nào cho đúng?
\(AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)
\(V=\dfrac{1}{3}SA.\dfrac{1}{2}AB.AC=\dfrac{1}{3}.2a\sqrt{6}.\dfrac{1}{2}.a.a\sqrt{3}=a^3\sqrt{2}\)
Đáp án là D