Mức cường độ âm lớn nhất mà tai người có thể chịu đựng được có giá trị 130dB. Biết cường độ âm chuẩn là 10 - 12 W / m 2 . Cường độ âm gây ra mức đó là:
A. 1 W / m 2
B. 10 W / m 2
C. 100 W / m 2
D. 0 , 1 W / m 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mức cường độ âm được tính theo công thức: \(L=log\dfrac{I}{I_0}\left(B\right)\)
Giới hạn tai người nghe được là:
\(\left\{{}\begin{matrix}L=log\dfrac{10^{-12}}{10^{-12}}=0\left(B\right)\\L=log\dfrac{10}{10^{-12}}=13\left(B\right)\end{matrix}\right.\)
Vậy tai người nghe được mức cường độ âm từ 0 - 13B
a: Mức cường độ âm là:
\(L=10\cdot log\left(\dfrac{l}{l0}\right)=10\cdot log\left(\dfrac{10^{-12}}{10^{-12}}\right)=20\left(dB\right)\)
b;
Để âm thanh không gây hại cho tai thì âm thanh cần phải có cường độ âm không vượt quá:
\(L=100000\cdot10^{-10}=10^{-5}\left(\dfrac{W}{m^2}\right)\)
Cường độ âm cần phải không vượt quá là:
\(10\cdot log\left(\dfrac{10^{-5}}{10^{-12}}\right)=70\left(dB\right)\)
a) Mức cường độ âm của tiếng thì thầm là:
\(L=10log\dfrac{10^{-10}}{10^{-12}}=20\left(dB\right)\)
b) Để âm thanh không gây hại cho tai khi nghe thời gian dài thì cường độ âm là:
\(I=100000.10^{-10}=10^{-5}\left(W/m^2\right)\)
Mức cường độ âm giới hạn đó là:
\(L=10log\dfrac{10^{-5}}{10^{-12}}=70\left(dB\right)\)