Cho hàm số y = f(x) có đạo hàm f ' x = x x + 1 x - 2 2 với mọi x ∈ ℝ . Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-1 ;2] là
A. f(-1)
B. f(0)
C. f(3)
D. f(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
f ' ( x ) = x ( x + 1 ) ( x - 2 ) 2 = 0 ⇔ [ x = 0 x = - 1 x = 2
với x=2 là nghiệm kép.
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta thấy hàm số đạt giá trị nhỏ nhất trên đoạn [-1;2] tại x=0.
Chọn đáp án B.
Chọn A
Hàm số y = f(x) thỏa mãn f'(x) < 0 ∀ x ∈ ( a ; b ) nên hàm số nghịch biến trên (a;b).
Do đó
Chọn A
Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau
Nhận thấy
Để tìm ta so sánh f(-1) và f(2)
Theo giả thiết,
Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0
HD: Giá trị nhỏ nhất của hàm số là f (0). Chọn B.