K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

Câu hỏi của Sao Cũng Được - Toán lớp 6 - Học toán với OnlineMath

8 tháng 10 2023

help me

13 tháng 1 2018

Có : 2015^n có tận cùng là 5

2^2015 = 2^3.2^2012 - 8.(2^4)^503 = 8.16^503 = 8. ....6 = ....8

Vì m^2 là số chính phương nên m^2 ko có tận cùng là 7

=> A ko có tận cùng là : 0 ( vì 5+8+7 = 20 )

=> A ko chia hết cho 10

=> đpcm

Tk mk nha

22 tháng 2 2016

 ta có 405^n luôn có c/số tận cùng bằng 5 (vì 405 tận cùng bằng chữ số 5)  
-- với 2^405 ta để ý lũy thừa với cơ số là 2 có quy luât c/số tận cùng như sau:  
2^1=2 ; 2^2=4 ;2^3=8 ;2^4=16 ; 2^5=32 ......... rút ra quy luật là : chữ số tận cùng lặp lại quy luật 1 nhóm
 gồm 4 chữ số (2 ;4 ;6;8)  
ta có 405 :4 =100 (nhóm)dư 1 c/số 2 => c/số tận cùng của 2^405 là 2  
+ m^2 (với m Є N ),có c/số tận cùng là 1 trong các c số sau: 0 ;1 ;4 ;5 ;6 ;9
 => 405^n + 2^405 + m^2 có c/số tận cùng là c số tận cùng trong các kết quả sau :  
(5+2+0=7; 5+2+1=8 ;5+2+4=11 ;5+2+5=12; 5+2+6=13 ;5+2+9 =16)  
=>405^n + 2^405 + m^2 không chia hết cho 10 vì số chia hết cho 10 phải có c/số tận cùng =0
 vậy biểu thức A = 405^n + 2^405 + m^2 ( m,n Є N, n # 0) không chia hết cho 10 

cho nha

3 tháng 3 2020

\(A=405^n+2^{405}+m^2\)

\(405^n=\overline{...5}\)

\(2^{405}=\left(2^4\right)^{101}.2=16^{101}.2=\overline{...6}.2=\overline{...2}\)

\(m^2\) là 1 số chính phương nên có tận cùng là 0;1;4;5;6;9

\(\Rightarrow\) A có tận cùng là 7;8;1;2;3;6

Vậy \(A⋮10̸\)

9 tháng 1 2016

A = 405n + 2405 + m2

405 n tận cùng là 5

2405 = (24)101 . 2

= (...6)101 . 2 = (..6).2 = (..2)

m2 tận cùng là 0;1;4;5;6;9

Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6

n không có tận cùng là 0 

Vậy A không chia hết cho 10 

7 tháng 3 2019

phai la 7 8 1 2 3 6 chu ko phai 7 8 3 2 6

14 tháng 1 2021

Ta có \(405^n\)có tận cùng là 5 ( vì 405 có tận cùng là 5 ) 

Khì lũy thừa 2 lên thì ta được tận cùng của \(2^n\) có quy luật là  2-4-8-6-2-...  ( là một nhóm gồm 4 chữ số 2,4,8,6 ) 

Dựa trên quy luật trên ta có : 405 : 4 = 101 dư 1 . Đếm theo quy luật trên thì \(\Rightarrow\)\(^{2^{405}}\)sẽ có tận cùng là 1 

Ta có : (...5) + (...2) + \(m^2\)= (...7) + \(m^2\)

\(m^2\)( m \(\in\)\(ℕ\)) thì \(m^2\)sẽ có tận cùng là các chữ số 0,1,4,5,6,9

Vậy với \(405^n+2^{405}+m^2\)sẽ có tận cùng là 

TH1 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...0) = (...7)

TH2 : \(405^n+2^{405}+m^2\)= (...5) + (...2) +(...1) = (...8)

TH3 : \(405^n+2^{405}+m^2\)= ( ..5) + (..2) + (...4) = (....1)

TH4 :\(405^n+2^{405}+m^2\)= (...5) + (...2) + (...5) = (...2)

TH5 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...6) = (...3)

TH6 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...9) = ( ...6) 

\(\Rightarrow\)\(405^n+2^{405}+m^2\)không chia hết cho 10 ( vì phải có tận cùng = 0 ) \(\Rightarrow\)dpcm