K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

x=5 y=2 nhé, mình ko trình bày được, thông cảm

12 tháng 2 2020

\(x^2-6y^2=1\)

\(+,y=2\Rightarrow x^2=4.6+1=25\Rightarrow x=5\left(\text{thỏa mãn}\right)\)

\(+,y>2\Rightarrow x>2\Rightarrow x;y\text{ lẻ }\Rightarrow x^2;y^2\text{ chia 4 dư 1}\Rightarrow1\text{ chia 4 dư:}1-2=-1\left(\text{vô lí}\right)\)

Vậy: x=5;y=2

19 tháng 10 2016

Ta có:\(x\left(x+1\right)=y^2+1\Leftrightarrow x^2+x=y^2+1\Leftrightarrow4x^2+4x+1=4y^2+5\)

\(\Leftrightarrow\left(2x+1\right)^2-4y^2=5\Leftrightarrow\left(2x+2y+1\right).\left(2x-2y+1\right)=5\)

Do x,y thuộc Z nên  2x+2y+1 và 2x-2y+1 là ước của 5

Ta có bảng giá trị :

2x+2y+115-1-5
2x-2y+151-5-1
x11-2-2
y-111-1

Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(1;1\right);\left(-2;1\right);\left(-2;-1\right)\right\}\)

7 tháng 11 2018

x=5,y=2

30 tháng 12 2018

X=5

Y=2

1 tháng 6 2015

x2-2x+1=(6y2)-2x+2

x2-2x+1=(6y)(6y)-2x+1+1

x2=(6y2)+1

từ đó =>

16 tháng 7 2017

Ta có \(x^2=6y^2+1\) là số lẻ nên đặt \(x=2k+1\left(k\in N\right)\), ta có:

\(\left(2k+1\right)^2=6y^2+1\Rightarrow4k^2+4k+1=6y^2+1\Rightarrow4k^2+4k=6y^2\)

\(\Rightarrow2k\left(k+1\right)=3y^2\Rightarrow3y^2⋮2\Rightarrow y⋮2\Rightarrow y=2\) (vì y là số nguyên tố)

Thay y=2 vào đẳng thức ban đầu ta được: \(x^2=6.2^2+1=25\Rightarrow x=5\)

Vậy \(\left(x;y\right)=\left(5;2\right)\)

16 tháng 7 2017

x = 5; y = 2

22 tháng 6 2018

Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự

Bài 2 : Ta có :

\(x^2-6y^2=1\)

\(\Rightarrow x^2-1=6y^2\)

\(\Rightarrow y^2=\frac{x^2-1}{6}\)

Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)

=> y2 là số chẵn

Mà y là số nguyên tố => y = 2

Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)

\(\Rightarrow x^2=25\Rightarrow x=5\)

Vậy x=5 ; y =2