K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

cách khác : 

Giả sử a ; b ; c đều không chia hết cho 3 ; khi đó a^3 ; b^3 ; c^3 đều không chia hết cho 27 
=> a^3 ; b^3 ; c^3 đều khác 27x với x thuộc Z 
=> a^3 + b^3 + c^3 khác 27x + 27x + 27x = 9^2 x (trái với gt) 
=> đpcm

29 tháng 1 2016

Giả sử a<0,vì abc>0 nên bc<0.

Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0

=>a(b+c)>0,mà a<0 nên b+c<0

=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

29 tháng 1 2016

C2:  Giả sử a<0,vì abc>0 nên bc<0.

Mặt khác thì ab+ac+bc>0

<=>a(b+c)>-bc>0

=>a(b+c)>0,mà a<0 nên b+c<0

=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

29 tháng 1 2016

C1: Giả sử a ; b ; c đều không chia hết cho 3 ; khi đó a^3 ; b^3 ; c^3 đều không chia hết cho 27 
=> a^3 ; b^3 ; c^3 đều khác 27x với x thuộc Z 
=> a^3 + b^3 + c^3 khác 27x + 27x + 27x = 9^2 x (trái với gt) 
=> đpcm

29 tháng 1 2016

ko giỏi toán chứng minh

Giả sử a <0

Vì abc>0 nên bc <0

Có ab+bc+ca>0

<=>a(b+c)>-bc

Vì bc<0=>-bc>0

=>a(b+c)>0

Mà a<0 nên b+c<0

=> a+b+c<0

Mà theo đề a+b+c>0

=> điều giả sử sai

=> điều pk chứng minh

16 tháng 7 2022

Giả sử ba số aabbcc không đồng thời là các số dương thì có ít nhất một số không dương.

Không mất tính tổng quát, ta giả sử a ≤ 0 

loading... Nếu a = 00 thì abc = 0ab0 (mâu thuẫn với giả thiết abc>0ab0)

loading... Nếu a < 00 thì từ abc > 0 \Rightarrow bc < 0ab0⇒ b0.

Ta có ab + bc + ca > 0 \Leftrightarrow a(b + c) > -bc \Rightarrow a(b+c) > 0 \Rightarrow b + c < 0 \Rightarrow a + b + c < 0ab bc⇔ a(b+c− b⇒ a(b+c⇒ ⇒ 0 (mâu thuẫn với giả thiết)

Vậy cả ba số aabb và cc đều dương.

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhau nên chọn a>0

TH1: b<0;c<0 

\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)

\(\Rightarrow b^2+2bc+c^2< -ab-ac\)

\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)

TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

3 tháng 2 2017

Ta có: abc > 0 nên xảy ra 2 trường hợp hoặc là a,b,c đều dương (bài toán được chứng minh) hoặc trong 3 số sẽ có 2 số âm 1 số dương.

Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a< 0\\b< 0\\c>0\end{cases}}\)

Ta đặt: \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\) thì theo đề bài ta có

\(\hept{\begin{cases}c-x-y>0\\xy-cx-xy>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}c>x+y\left(1\right)\\xy>cx+cy\left(2\right)\end{cases}}\)

Từ (1) ta có thể suy ra được: \(\hept{\begin{cases}cx>x^2+xy\\cy>y^2+xy\end{cases}}\)

\(\Rightarrow cx+cy>x^2+2xy+y^2\left(3\right)\)

Từ (2) và (3) ta có: \(xy>cx+cy>x^2+2xy+y^2\)

\(\Leftrightarrow0>x^2+xy+y^2\) (sai)

Từ đây ta thấy rằng chỉ có trường hợp \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\) là đúng

3 tháng 2 2017

Rõ rảng abc > 0 nên a,b,c phải khác 0 
+ Giả sử trong a,b,c có 1 số bé hơn 0,vì vai trò a,b,c như nhau giả sử là a ta có 
a < 0 ,do abc > 0 => bc < 0 do a(b + c) + bc > 0 => a(b + c) > -bc hay a(b + c) > 0 do a < 0 => b + c < 0 
=> a + b + c < 0 mâu thuẫn với 1 giả thiết a + b + c > 0 
+ Giả sử có 2 số nhỏ hơn không,tương tự giả sử là a và b ta có 
a + b + c > 0 => c > 0 => abc < 0 mâu thuẫn 
+ còn a,b,c đều nhỏ hơn 0 thì hiển nhiên a + b + c < 0 mâu thuẫn với a + b + c > 0 
Vậy bất buộc cả 3 a,b,c đều phải đồng thời lớn hơn 0