K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

16 tháng 6 2018

Đáp án B

Thật vậy, giả sử M N / / B C  Ta sẽ chứng minh thiết diện là hình thang.

 

Khi đó, thiết diện là tứ giác  J M J N

 

Do đó, tứ giác  J M J N là hình thang (đpcm)

14 tháng 5 2017

+ Ta tìm thiết diện của hình chóp cắt bởi (α):

Trong ( SAB) dựng MQ // SA( Q thuộc SB)

Gọi I là giao điểm của AC và MN.

Trong mp ( SAC); dựng IP// SA với P thuộc SC.

Khi dó thiết diện cần tìm là  tứ giác MNPQ.

+ Tứ giác MNPQ là một hình thang khi MN// PQ hoặc MQ// PN.

=> MN//PQ  nên tứ giác MNPQ là hình thang.

Vậy để tứ giác MNPQ là hình thang thì điều kiện là MN//BC.

Chọn C

26 tháng 11 2019

4 tháng 1 2019

4 tháng 3 2019

Đáp án là C

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

18 tháng 12 2017

Chọn C

Giả sử mặt phẳng (P) cắt (SBC) theo giao tuyến PQ. Khi đo đó MN//BC nên theo định lý ba giao tuyến song song hoặc đồng quy áp dụng cho ba mặt phẳng (P);(SBC);(ABCD) thì ta được ba giao tuyến MN;BC;PQ đôi một song song. Do đó thiết diện là một hình thang.

2 tháng 7 2017

Chọn C

Giả sử mặt phẳng (P) cắt (SBC) theo giao tuyến PQ. Khi đo đó MN//BC nên theo định lý ba giao tuyến song song hoặc đồng quy áp dụng cho ba mặt phẳng (P);(SBC);(ABCD) thì ta được ba giao tuyến MN;BC;PQ đôi một song song. Do đó thiết diện là một hình thang.