Cho A= 1/101+1/102+...+1/130. CMR: 1/4<A<91/330
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)
Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath
Bn vào link này có câu trả lời đó nha
S =
101
1 +
102
1 + ... +
110
1 +
111
1 + ... +
120
1 +
121
1 + ... +
130
1
>
110
1 .10 +
120
1 .10 +
130
1 .10 =
11
1 +
12
1 +
13
1 >
12
1 +
12
2 =
4
1 (Dễ có:
11
1 +
13
1 >
12
2 )
=> S >
4
1 (1)
+) S =
101
1 +
130
1 +
102
1 +
129
1 + ... +
115
1 +
116
1 (Có 15 cặp)
=
101.130
231 +
102.129
231 + ... +
115.116
231 = 231.
101.130
1 +
102.129
1 + ... +
115.116
1
ta có nhận xét: tích 101.130 có giá trị nhỏ nhất. thật vậy:
Xét 102.129 = (101 + 1).(130 - 1) = 101.130 - 101 + 130 -1 = 101.130 + 28 > 101.130
Tương tự, các cặp còn lại . Do đó, ta có
101.130
1 +
102.129
1 + ... +
115.116
1 <
101.130
1
.15
=> S < 231.
101.130
1
.15 =
2626
693 <
330
91
(2)
Từ (1)(2) => đpcm
sao dễ vậy
a) Ta chọn biểu thức B làm trung gian sao cho A > B, còn B \(\ge\)\(\frac{7}{12}\).
Tách A thành 2 nhóm, mỗi nhóm 50 phân số, rồi thay mỗi phân số trong từng nhóm bằng phân số nhỏ nhất trong nhóm ấy, ta được :
A = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(>\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
b) Tách A thành bốn nhóm rồi cũng làm như trên, ta được :
A > \(\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\frac{1}{8}=\frac{107}{210}+\frac{1}{8}>\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)