Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = m cos x + 1 cos x + m đồng biến trên khoảng 0 ; π 3
A. - 1 ; 1
B. - ∞ ; - 1 ∪ 1 ; + ∞
C. [ - 1 ; - 1 2 )
D. - 1 ; - 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Chọn A.
Ta có: y ' = 2 x x 2 + 1 - m
Hàm số y = ln x 2 + 1 - m x + 1 đồng biến trên khoảng( -∞; +∞). Khi và chỉ khi y’ ≥0 với mọi . ⇔ g ( x ) = 2 x x 2 + 1 ≥ m , ∀ x ∈ - ∞ ; + ∞
Ta có
Bảng biến thiên:
Dựa vào bảng biến thiên ta có:
Đáp án D
Để hàm số đã cho đồng biến trên khoảng − ∞ ; + ∞ thì y ' > 0 , ∀ x ∈ ℝ
Xét hàm số y = x x 2 + 1 có y ' = 1 x 2 + 1 x 2 + 1 > 0 , ∀ x ∈ ℝ => Hàm số y' luôn đồng biến.
Ta có: lim x → − ∞ x x 2 + 1 = − 1
Vậy để hàm số đã cho đồng biến trên khoảng − ∞ ; + ∞ thì m ≤ − 1 .
Đáp án D
y ' = 2 x x 2 + 1 − m = 2 x − m x 2 + 1 x 2 + 1 T H 1 : m = 0 ⇔ 2 x x 2 + 1 > 0 ⇔ x > 0 T H 2 : m ≠ 0
Hàm số đồng biến trên khoảng
− ∞ ; + ∞ ⇔ − m x 2 + 2 x − m > 0 ∀ x ∈ ℝ
⇔ − m > 0 Δ ' = 1 − m 2 ≤ 0 ⇔ m < 0 m ≥ 1 m ≤ − 1 ⇔ m ≤ − 1
Đáp án đúng : C