K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

Đáp án là C.

          Txđ:   D = ℝ

          Với x < 4   ta có f x = a + 2 x 4   ⇒ f x liên tục trên   − ∞ ; 4

          Với x > 4  ta có :     f x = 2 x + 1 − x + 5 x − 4   ⇒ f x = 2 x + 1 − x + 5 x − 4 liên tục trên 4 ; + ∞  

          Tại x >4 ta có: f 4 = a + 2

Ta có   lim x → 4 − f x = lim x → 4 − a + 2 x 4 = a + 2

lim x → 4 + f x = lim x → 4 + 2 x + 1 − x + 5 x − 4 = lim x → 4 + 1 2 x + 1 + x + 5 = 1 6          

Để hàm số f x liên tục trên ℝ  khi hàm số f x  liên tục tại x = 4  thì 

lim x → 4 − f x = lim x → 4 + f x = f 4 ⇔ a + 2 = 1 6 ⇔ a = − 11 6

6 tháng 12 2016

trả lời nhanh giùm cái

xin m.n đó

22 tháng 11 2023

1,Thay x = 1 vào biểu thức ta có

f = 4 x 12 -5

f = -1

2, Đặt f(x) = -1, ta có:

4 x x2 - 5 = -1

4 x x2 = 4

x2 = 4 : 4

x2 = 1

x2=12

=> x = 1 hoặc = -1

Vậy để f(x)=1 thì x ϵ {-1;1}

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

19 tháng 6 2019

a) \(f\left(x\right)=\frac{x+2}{x-1}\)

\(f\left(x\right)=\frac{1}{4}\Leftrightarrow\frac{x+2}{x-1}=\frac{1}{4}\)

\(\Leftrightarrow4\left(x+2\right)=x-1\)

\(\Leftrightarrow4x+8=x-1\)

\(\Leftrightarrow4x-x=-1-8\)

\(\Leftrightarrow3x=-9\)

\(\Leftrightarrow x=-3\)

Vậy x = -3 thì hàm số y = f(x) = \(\frac{1}{4}\)

b) \(f\left(x\right)=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để f(x) nguyên thì \(\frac{3}{x-1}\)nguyên

hay \(3⋮\left(x-1\right)\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(x-1\)\(1\)\(-1\)\(3\)\(-3\)
\(x\)\(2\)\(0\)\(4\)\(-2\)

Vậy \(x\in\left\{2;0;4;-2\right\}\) thì f(x) nguyên

19 tháng 6 2019

a) Ta có: f(x) = 1/4

=> \(\frac{x+2}{x-1}=\frac{1}{4}\)

=> \(4\left(x+2\right)=x-1\)

=> 4x + 8 = x - 1

=> 4x - x = -1 - 8

=> 3x = -9

=> x = -3

b) Ta có: \(f\left(x\right)=\frac{x+2}{x-1}=\frac{\left(x-1\right)+3}{x-1}=1+\frac{3}{x-1}\)

Để f(x) có giá trị nguyên <=> \(3⋮x-1\) <=> \(x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng :

   x - 1   1   -1   3   -3
   x   2   0    4   -2

Vậy ...