[a.[a-2]+1].[2-a]
Giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 22 + 23 + 24 + ..... + 22021
2A = 2 + 22 + 23 + 24 + 25 + ..... + 22022
2A - A = ( 2 + 22 + 23 + 24 + 25 + ..... + 22022 ) - ( 1 + 2 + 22 + 23 + 24 + ..... + 22021 )
A = 22022 - 1
A = 1 + 2 + 22 + 23 +...+ 228
A = (1 + 2 + 22) + (23 + 24 + 25) + ... + (226 + 227 + 228)
A = 1. (1 + 2 + 22) + 23. (1 + 2 + 22) +...+ 226.(1 + 2 + 22)
A = 1.7 + 23.7 + ... + 226.7
A = (1 + 23 + ... + 226).7
⇒ A ⋮ 7 ⇒ A : 7 dư 0
(A;1) có R=1
A(1;2) có hoành độ là 1=R và tung độ là 2>R
nên (A;1) sẽ tiếp xúc với trục Ox và sẽ không giao với trục Oy
(A;2) có R=2
A(1;2) có hoành độ là 1<R và tung độ là 2=R
=>(A;2) sẽ cắt trục Ox và tiếp xúc với trục Oy
cho ab+bc+ac =1 tính P= (a+b+c-abc)^2/(a^2+1)(b^2+1)(c^2+1)
Ai giúp mik với mik đang cần gấp
help me
Lời giải:
Có:
$(a^2+1)(b^2+1)(c^2+1)=(a^2+ab+bc+ac)(b^2+ab+bc+ac)(c^2+ab+bc+ac)$
$=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$
Và:
$(a+b+c-abc)^2=[(a+b+c)(ab+bc+ac)-abc]^2$
$=[ab(a+b)+bc(b+c)+ca(c+a)+2abc]^2$
$=[ab(a+b+c)+bc(b+c+a)+ca(c+a)]^2$
$=[(a+b+c)(ab+bc)+ca(c+a)]^2=[b(a+b+c)(a+c)+ac(c+a)]^2$
$=[(c+a)(ab+b^2+bc+ac)]^2=[(c+a)(b+a)(b+c)]^2$
Do đó: $P=\frac{[(a+b)(b+c)(c+a)]^2}{[(a+b)(b+c)(c+a)]^2}=1$
\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)
= \(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)
= \(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)
= \(\dfrac{337.2023}{2}\)
= \(\dfrac{\text{681751}}{2}\)