Cho hàm số liên tục trên khoảng (-3;2),
có bảng biến thiên như hình vẽ bên. Khẳng định nào sau
đây là đúng?
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Hàm số liên tục tại một điểm
+ Hàm số liên tục trên một khoảng
- Hàm số y = f(x) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm thuộc khoảng đó.
- Hàm số y = f(x) được gọi là liên tục trên một đoạn [a; b] nếu nó liên tục tại mọi điểm thuộc khoảng (a;b) và
Đồ thị của hàm số liên tục trên một khoảng là một “đường liền” trên khoảng đó.
Ta có
= TH1: Do đó hàm số nghịch biến trên (-4;-2)
= TH2: nên hàm số chỉ nghịch biến trên khoảng (2-2a;4) chứ không nghịch biến trên toàn khoảng (2;4)
Vậy hàm số nghịch biến trên (-4;-2)
Chọn A.
Chọn C
Từ đồ thị hàm số y=f’(x) ta có bảng biến thiên cho hàm số y=f(x) như sau:
Nhìn vào bảng biến thiên ta thấy ngay trong khoảng (-2;+∞) thì hàm số y=f(x) đồng biến
Đặt t = 1 - x, bất phương trình trở thành f'(t) > -t
Kẻ đường thẳng y = -x cắt đồ thị hàm số f'(x) lần lượt tại ba điểm x = -3, x = -1, x = 3 (như hình vẽ)
Quan sát đồ thị ta thấy bất phương trình
Đối chiếu đáp án ta chọn B.
Đáp án A