K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018


Chọn A

11 tháng 5 2023

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`

11 tháng 3 2023

\(\dfrac{x+4}{5}-x+5>\dfrac{x+3}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow6x+24-30x+150>10x+30-15x+30\)
\(\Leftrightarrow-19x>-114\)
\(\Leftrightarrow x>6\)
vậy nghiệm của bất phương trình là \(x>6\)

a: =>4x^2-24x+36-4x^2+4x-1<10

=>-20x<10-35=-25

=>x>=5/4

b: =>x(x^2-25)-x^3-8<=3

=>x^3-25x-x^3-8<=3

=>-25x<=11

=>x>=-11/25

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)

Đến đây nhường bn, rất dễ =))

b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)

\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)

\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)

Khử mẫu \(x-1-3=5\left(x-5\right)\)

Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu 

6 tháng 7 2020

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)

\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)

\(< =>9=x^2-2x-x+2+3x+6\)

\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)

\(< =>x^2-2=0\)\(< =>x^2=2\)

\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)

Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)

24 tháng 7 2021

\(\left|x-5\right|=2x\)ĐK : x>=0 

TH1 : x - 5 = 2x <=> x = -5 ( loại )

TH2 : x - 5 = -2x <=> 3x = 5 <=> x = 5/3 ( tm )

Vậy tập nghiệm pt là S = { 5/3 } 

\(\left(x-2\right)^2+2\left(x-1\right)\le x^2+4\)

\(\Leftrightarrow x^2-4x+4+2x-2-x^2-4\le0\)

\(\Leftrightarrow-2x-2\le0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

Vậy tập nghiệm bft là S = { x | x > = -1 } 

Ta có: \(\left|x-5\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x\left(x\ge5\right)\\x-5=-2x\left(x< 5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=5\\x+2x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=5\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

20 tháng 7 2021

undefined

31 tháng 5 2023

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2< 10\)

\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-10< 0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-10< 0\)

\(\Leftrightarrow-20x< -25\)

\(\Leftrightarrow x>\dfrac{5}{4}\)

\(b,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)\le3\)

\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)\le3\)

\(\Leftrightarrow x^3-25x-\left(x^3+8\right)\le3\)

\(\Leftrightarrow x^3-25x-x^3-8-3\le0\)

\(\Leftrightarrow-25x\le11\)

\(\Leftrightarrow x\ge-\dfrac{11}{25}\)