K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

Chọn D

26 tháng 1 2019

Đáp án A

Phương pháp :

Sử dụng bảng nguyên hàm cơ bản.

Cách giải:

Ta có:

11 tháng 4 2019

Chọn A.

20 tháng 3 2016

Một trong các nguyên hàm của hàm số \(f\left(x\right)=\cos x+\sin x\) là hàm số \(\sin x-\cos x\) . Từ định lí nếu hàm số f(x) có nguyên hàm F(x) trên khoảng (a,b) thì trên khoảng đó nó có vô số nguyên hàm và hai nguyên hàm bất kì của cùng một hàm cho trên khoảng (a,b) là sai khác nhau một hằng số cộng. suy ra mọi nguyên hàm số đã cho đều có dạng \(F\left(x\right)=\sin x-\cos x+C\), trong đó C là hằng số nào đó. 

Để xác định hằng số C ta sử dụng điều kiện F(0)=1

Từ điều kiện này và biểu thức F(x) ta có :

\(\sin0-\cos0+C=1\Rightarrow C=1+\cos0=2\)

Do đó hàm số \(F\left(x\right)=\sin x-\cos x+2\) là nguyên hàm cần tìm

1 tháng 12 2018

Đáp án D

13 tháng 1 2021

f(x)=4sin2x.cos2x.sinx=4(1-cos2x)cos2x.sinx=(4cos4x-4cos2x)(-sinx)

Đặt u=cosx ---> F(x)=(4/5)cos5x-(4/3)cos3x+C

14 tháng 1 2021

vì sao sin²2x lại bằng 4sin²x.cos²x

15 tháng 7 2017

23 tháng 1 2016

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

30 tháng 3 2017

Đáp án B.

29 tháng 1 2018

Đáp án A