Khi chia số tự nhiên a cho các số 5, 7, 11 thì được số dư lần lượt là 3, 4, 6. Tìm số a biết 100<a<200.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
30 tháng 10 2017
số 59 đấy bạn ạ vì 59 chia cho 3 dư 2 chia 7 dư 3 chia 5 dư 4
30 tháng 10 2017
Theo đề '' tao '' có :
a : 3 dư 2 => a + 1 \(⋮\)3 => a + 1 + 51 \(⋮\)3 => a + 52 \(⋮\)3
a: 5 dư 3 => a + 2 \(⋮\)5 => a + 2 + 50 \(⋮\)3 => a + 52 \(⋮\)5
a:7 dư 4 => a + 3 \(⋮\)7 => a + 3 + 49 \(⋮\)7 => a + 52 \(⋮\)7
a nhỏ nhất
=> a + 52 = BCNN ( 3 , 5 , 7 )
Ta có :
3 = 3
5 = 5
7 = 7
=> BCNN ( 3 , 5 , 7 ) = 3 . 5 . 7 = 105
=> a = 105 - 52 = 53
Vậy a = 53
1
DD
Đoàn Đức Hà
Giáo viên
1 tháng 9 2021
Khi chia \(a\)lần lượt cho \(5,7,11\)thì được số dư là \(3,4,6\)
suy ra \(2a-1\)chia hết cho cả \(5,7,11\).
Mà \(a\)nhỏ nhất nên \(2a-1=BCNN\left(5,7,11\right)=385\).
\(\Leftrightarrow a=193\).
ta có: a=5k+3;a=7k+4,a=11k+6
suy ra: 2a-1 e BCNN(5,7,11)
tìm được a=193