K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

Chọn A.

Phương pháp:

+ Xác định chiều cao của hình chóp bằng cách sử dụng: Nếu SA = SB = SC thì S thuộc trục đường tròn ngoại tiếp tam giác ABC hay chân đường cao hạ từ S xuống (ABC) trùng với tâm đường tròn ngoại tiếp

tam giác . ABC 

+ Tính chiều cao SH dựa vào định lý Pyatgo

+ Tính thể tích theo công thức V = 1 3 h . S  với h là chiều cao hình chóp, S là diện tích đáy.

Cách giải:

NV
24 tháng 6 2021

Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)

\(\Rightarrow\) CH là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCH}=60^0\)

Do \(\widehat{ABD}=60^0\Rightarrow\) các tam giác ABD và BCD là tam giác đều cạnh a

\(\Rightarrow\widehat{ABC}=120^0\)

Áp dụng định lý hàm cos cho tam giác BCH:

\(CH=\sqrt{BC^2+BH^2-2BC.BH.cos120^0}=\dfrac{a\sqrt{7}}{2}\)

\(\Rightarrow SH=CH.tan60^0=\dfrac{a\sqrt{21}}{2}\)

\(V=\dfrac{1}{3}SH.2S_{ABD}=\dfrac{1}{3}.\dfrac{a\sqrt{21}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{7}}{8}\)

6 tháng 1 2018

Chọn A

Phương pháp:

+ Xác định chiều cao của hình chóp bằng cách sử dụng: Nếu SA = SB = SC thì S thuộc trục đường tròn ngoại tiếp tam giác ABC hay chân đường cao hạ từ S xuống (ABC) trùng với tâm đường tròn ngoại tiếp

tam giác . ABC 

+ Tính chiều cao SH dựa vào định lý Pyatgo

 

+ Tính thể tích theo công thức  với h là chiều cao hình chóp, S là diện tích đáy. 

 

Cách giải: 

Vì ABCD là hình thoi nên AB = BC mà   nên ABC là

tam giác đều cạnh a. 

Gọi H là trọng tâm tam giác ABC, O là giao điểm hai đường chéo hình thoi.

Vì SA = SB = SC nên S thuộc trục đường tròn ngoại tiếp tam giác ABC hay chân đường cao hạ từ S xuống (ABC) trùng với tâm đường tròn ngoại tiếp H của tam giác ABC. Hay  

+ Vì ABC đều cạnh a tâm H nên

NV
5 tháng 2 2021

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

7 tháng 5 2017

23 tháng 4 2019

26 tháng 12 2017

Đáp án B

26 tháng 12 2019

Đáp án A

Chọn D