Rút gọn biểu thức
P = a 3 b 3 - 1 3 + 1 . a - 1 - 3 b - 2 a , b > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3=6a^2b\\ b,=\left(6x+1-6x+1\right)^2=2^2=4\)
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
a) \(A=1+3+3^2+...+3^{100}\)
\(3A=3+3^2+3^3+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...-2^3+2^2-2+1\)
\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...-2^4+2^3-2^2+2\)
\(B+2B=\left(2^{100}-2^{99}+...-2+1\right)+\left(2^{101}-2^{100}+...-2^2+2\right)\)
\(3B=2^{101}+1\)
\(B=\frac{2^{101}+1}{3}\)
(a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3
=a3+b3+3ab.(a+b)+3(a+b)2c+3(a+b)c2+c3
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[a.(b+c)+c.(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
=>dpcm
P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=>2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(52-1)(52+1)(54+1)(58+1)(516+1)
=(54-1)(54+1)(58+1)(516+1)
=(58-1)(58+1)(516+1)
=(516-1)(516+1)
=532-1
==>P=(532-1)/2
Bài 1:
a) \(A=5\left(x-3\right)\left(x+3\right)+\left(2x+3\right)^2\)
\(A=5\left(x^2-3^2\right)+\left(4x^2+12x+9\right)\)
\(A=5x^2-45+4x^2+12x+9\)
\(A=9x^2+12x-36\)
b) Thay x = 1/3 vào A ta có :
\(A=9\cdot\frac{1}{9}+\frac{12}{3}-36\)
\(A=1+4-36\)
\(A=-31\)
Chọn C