32014+1 có phải là 2 số nguyên liên tiếp không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-3)20 có tận cùng là chữ số 1 cộng với 1 nữa thì có tận cùng là chữ số 2. Vậy cũng có thể có cũng có thể không. Theo mình thì là không nhưng bạn nên xem lại đề bài !!!~~
giả sử tồn tại 2 số thỏa mãn
vì \(\left(-3\right)^{20}+1\) không chi hết cho 3=> cả 2 số đó đều k chia hết cho 3
=> tích 2 số đó là \(\left(3a-1\right)\left(3a+1\right)=9a^2-1\equiv2\left(mod3\right)\)
mà \(\left(-3\right)^{20}+1\equiv1\left(mod3\right)\)
=> vô lí=> điều giả sử sai=> không tồn tạ 2 số nào nhứ thế
1. thuộc P là thuộc gì ?
2. Có thể có có thể không, tùy vào p.
bài 1) gọi tích 2 số nguyên liên tiếp là a(a+1)
Nếu a=3k => a(a+1)=3k(3k+1)=9k^2+3k chia hết cho 3
Nếu a=3k+1=> a(a+1)=3k+1(3k+1)=9k^2+3k+3k+1 chia 3 dư 1
Nếu a=3k+2 tương tự chia hết cho 3
Số 3^50+1 chia 3 dư 1(vô lý)
Vậy nó không phải là tích 2 số nguyên liên tiếp. CHÚC BẠN HỌC TỐT<3
+) Chứng minh tích của 2 số tự nhiên liên tiếp chia 3 chỉ có số dư là 0 hoặc 2
Gọi a là số tự nhiên chia hết cho 3
2 số tự nhiên liên tiếp của a sẽ là a + 1; a + 2 ta thấy dc a + 1; a + 2 khi chia 3 sẽ có số dư lần lượt là 1 và 2
Ta xét tích :
TH1 :
a(a+1)⋮3a(a+1)⋮3 do a⋮3a⋮3 (1)(1)
TH2 :
(a+1)(a+2)=a2+3a+2(a+1)(a+2)=a2+3a+2 chia 3 dư 2 (2)(2)
Từ (1)+(2)⇒(1)+(2)⇒ Tích của 2 số tự nhiên khi chia cho 3 chỉ có số dư là 0 hoặc 2
Mà 520+1350+1 chia 3 dư 1
⇒520+1⇒350+1 ko thể là tích của 2 số tự nhiên liên tiếp
Gọi 2 số nguyên liên tiếp là a và a + 1.
Tích của chúng là a.(a + 1)
-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.
-Nếu a = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2 + 6k + 3k + 2 chia cho 3 dư 2.
-Nếu a = 3k + 2 thì a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2 + 9k + 3k + 3 chia hết cho 3.
Số 32014 chia hết cho 3 nên 32014 + 1 chia cho 3 dư 1. Do đó 32014 + 1 không phải là tích của hai số nguyên liên tiếp.