Chứng minh: (n2 + 3n + 4) không chia hết cho 49.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^2+3n+11\)
\(=n^2+3n+18-7\)
\(=\left(n+2\right)\left(n+9\right)-7\)
Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7
Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7
Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49
Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\)
Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N
Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.
=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.
Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11
mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121
=> (2n+3)^2+11 ko chia hết chia het cho 121
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
`(n^2+3n+1)^2-1`
`=(n^2+3n+1)-1^2`
`=(n^2+3n+1+1)(n^2+3n+1-1)`
`=(n^2+3n+2)(n^2+3n)`
`=(n+1)(n+2)n(n+3)`
`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.
`=> n(n+1)(n+2)(n+3) vdots 24`
Ta có: n2 + 3n – 10 + 14 = ( n – 2 ) ( n + 5 ) + 14
Ta có: n + 5 – (n – 2) = 7 => Hai số nguyên n + 5 và n – 2 cùng chia hết cho 7 hoặc chia cho 7 có cùng số dư.
+ Nếu hai số nguyên n + 5 và n – 2 cùng chia hết cho 7 => ( n + 5 ) ( n – 2 ) ⋮ 49 => P chia cho 49 dư 14.
+ Nếu hai số nguyên n + 5 và n – 2 chia cho 7 có cùng số dư thì (n + 5)(n – 2) không chia hết cho 7, 14 ⋮ 7 nên suy ra: P không chia hết cho 7
Suy ra P không chia hết cho 49.
Sai thì thôi nhan mn!
# Kukad'z Lee'z