K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

Phương pháp:

Thể tích khối chóp có chiều cao h và diện tích đáy S là V = 1 3 hS 

Sử dụng công thức tính diện tích tam giác để tính toán.

Cách giải:

 

Xét tam giác ABC vuông tại A ta có

Mà 

Thể tích khối chóp 

Chọn A.

10 tháng 6 2018

Đáp án D

27 tháng 6 2018

Đáp án C

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
10 tháng 4 2019

Đáp án A

Diện tích đáy là:

S d = B A . B C 2 = a 2 ⇒ h = 3 V S = 3 a 2  

11 tháng 7 2021

undefined

NV
11 tháng 7 2021

Ủa cái a căn 2(6) phải dịch thế nào cho đúng?

\(AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)

\(V=\dfrac{1}{3}SA.\dfrac{1}{2}AB.AC=\dfrac{1}{3}.2a\sqrt{6}.\dfrac{1}{2}.a.a\sqrt{3}=a^3\sqrt{2}\)

29 tháng 3 2017

Đáp án A

Vì tam giác đều nên 

24 tháng 6 2017

Chọn C.

1 tháng 2 2018

Đáp án D

16 tháng 3 2019

Phương pháp:

Xác định góc giữa các mặt phẳng (P) và (Q) ta thực hiện các bước sau:

+ Xác định giao tuyến d của (P) và (Q)

+ Trong mặt phẳng (P) xác định đường thẳng a ⊥ d trong mặt phẳng (Q) xác định đường thẳng b ⊥ d 

+ Khi đó góc giữa (P) và (Q) là góc giữa hai đường thẳng a và b

Cách giải:

Gọi M là trung điểm BC => AM ⊥ BC (do ∆ ABC cân tại A). 

Lại có  ∆ SAB =  ∆ SAC(c.g.c) hay  ∆ SBC cân tại S

=> SM ⊥ BC

Theo đề bài

Lại thấy  ∆ ABM vuông tại M có AB = a; 

Xét tam giác SAM vuông tại A có SA =  AM = a 2  nên  ∆ SAM vuông cân tại A hay  ∠ S M A =   45 °

Vậy góc giữa (SBC) và (ABC) bằng  45 °

Chọn D.