Cho A, B là hai điểm biểu diễn hình học của hai số phức z 1 , z 2 z 1 ≠ 0 , z 2 ≠ 0 và thỏa mãn z 1 2 + z 2 2 = z 1 z 2 . Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ).
A. Tam giác đều
B. Cân tại O
C. Vuông tại O
D. Vuông cân tại O.
Chọn đáp án A
Do z 2 ≠ 0 nên chia cả hai vế của z 1 2 + z 2 2 = z 1 z 2 cho z 2 2 , ta được:
Ta có A B = z 1 - z 2 = a
Vậy OA = OB = AB hay tam giác OAB đều.