Trong không gian với hệ tọa độ Oxyz, cho α là mặt phẳng chứa hai đường thẳng d 1 : x − 1 3 = y + 2 − 1 = z + 1 2 và d 2 : x = 12 − 3 t y = t z = 10 − 2 t . Phương trình mặt phẳng α là
A. 15 x − 11 y − 17 z − 54 = 0 .
B. 15 x + 11 y − 17 z + 10 = 0 .
C. 15 x − 11 y − 17 z − 24 = 0.
D. 15 x + 11 y − 17 z − 10 = 0 .
Đáp án D
Đường thẳng d 1 đi qua M 1 1 ; − 2 ; − 1 và có VTCP u 1 → = 3 ; − 1 ; 2 .
Đường thẳng d 2 đi qua M 2 12 ; 0 ; 10 và có VTCP u 2 → = − 3 ; 1 ; − 2 .
Như vậy: u 1 → = − u 2 → , M 1 ∉ d 2 . Suy ra d 1 / / d 2 .
Chú ý: Hai đường thẳng d 1 và d 2 song song nên em không thể lấy tích có hướng của hai VTCP để tìm VTPT của mặt phẳng vì tích có hướng của hai vectơ cùng phương là vectơ-không.
Gọi n → là một VTPT của mặt phẳng α thì vuông n → góc với hai vectơ không cùng phương