Với những giá trị nào của tham số m thì C m : y = x − 3 m + 1 x 2 + 2 m 2 + 4 m + 1 x − 4 m m + 1 cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn 1?
A. 1 2 < m ≠ 1
B. m > 1 2
C. m ≥ 1 2
D. m ≠ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Phương trình hoành độ giao điểm của đồ thị C và trục Ox:
x3- 3( m+ 1) x2+ 2( m 2+ 4m+1 )= 0
hay ( x- 2) ( x2-( 3m+ 1) x+ 2m2+ 2m) =0
Yêu cầu bài toán
Vậy ½< m và m≠ 1.
Chọn A.
\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)
Chọn a
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m^2-2m-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm1\\m\ne-1;m\ne3\end{matrix}\right.\Leftrightarrow m=1\)
Chọn A
Hàm là bậc nhất khi:
a. \(3m-2\ne0\Rightarrow m\ne\dfrac{2}{3}\)
b. \(3-m>0\Rightarrow m< 3\)
c. \(\left\{{}\begin{matrix}2m-1\ne0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m\ne-2\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}m^2-4=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
a: ĐKXĐ: \(m\ne\dfrac{2}{3}\)
b: ĐKXĐ: \(m< 3\)
c: ĐKXĐ: \(\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m< -2\end{matrix}\right.\)
d: ĐKXĐ: \(m=2\)
a: ĐKXĐ: \(m\le5\)
b: ĐKXĐ: \(m\notin\left\{-1;1\right\}\)
c: ĐKXĐ: \(m\ne-2\)
Phương trình hoành độ giao điểm của đồ thị (C) và trục Ox:
x3-3(m+1) x2+2(m2+4m+1)x-4m(m+1)=0
hay (x-2) (x2-(3m+1) x+2m2+2m)=0
Chọn A.
Đáp án A
Phương trình hoành độ giao điểm của đồ thị (C)và trục Ox:
x 3 − 3 m + 1 x 2 + 2 m 2 + 4 m + 1 x − 4 m m + 1 = 0 ⇔ x − 2 x 2 − 3 m + 1 x + 2 m 2 + 2 m = 0 ⇔ x − 2 = 0 x 2 − 3 m + 1 x + 2 m 2 + 2 m = 0 ⇔ x = 2 x = 2 m x = m + 1
Yêu cầu bài toán ⇔ 1 < 2 m ≠ 2 1 < m + 1 ≠ 2 2 m ≠ m + 1 ⇔ 1 2 < m ≠ 1 0 < m ≠ 1 m ≠ 1 ⇔ 1 2 < m ≠ 1. Vậy chọn 1 2 < m ≠ 1