K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Đáp án C

30 tháng 1 2017

Để hàm số có ba điểm cực trị khi và chỉ khi ab< 0 hay 1.( -2m) <0

Suy ra m> 0

Khi đó 

Suy ra tọa độ các điểm cực trị của đồ thị hàm số là:

A 0 ; 2 ,   B m ;   - m 2 + 2 ,   C - m ;   - m 2 + 2

Ycbt  O A . O B . O C = 12 ⇔ 2 m + - m 2 + 2 2 = 12

Giải ra ta được m=2; có một giá trị nguyên.

Chọn B.

29 tháng 8 2017

Hàm số y   =   f x  với f(x) là hàm đa thức bậc 3 có 5 điểm cực trị khi và chỉ khi hàm số f(x) có hai cực trị và đồ thị của hàm số cắt trục hoành tại 3 điểm phân biệt.

Mặt khác, f(x) là hàm số bậc 3 nên khi đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt thì hàm số đồng thời cũng có hai cực trị. Do đó ta chỉ cần tìm điều kiện để phương trình f(x) = 0 có 3 nghiệm phân biệt.

Chọn D

26 tháng 1 2019

Chọn A

12 tháng 4 2022

Đơn giản là bạn vẽ cái hàm bậc 4 đó ra và cho -m và -m-10 cắt thôi. Vì -m-10<-m nên -m-10 sẽ nằm ở dưới, còn -m nằm trên. Nên -m sẽ cắt 2 điểm và -m-10 cắt 4 điểm cho ta 6 điểm. Ngoài ra k còn trường hợp nào khác mà -m và -m-10 cắt thỏa mãn

12 tháng 4 2022

Mình cảm ơn ạ, cho mình hỏi là nếu m đi qua cực trị thì có được tính là có nghiệm không ạ?

26 tháng 7 2017

Chọn C.

Phương pháp:

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

3 tháng 7 2018

30 tháng 4 2019

Ta có : y’ = 4x3-4( m+ 1) x= 4x( x2- (m+ 1) ).

Hàm số có  điểm cực trị khi và chỉ khi y’ = 0 có  nghiệm phân biệt hay m+1> 0 suy ra m> - 1. (*)

Khi đó, ta có: 

Do đó  O A = B C ⇔ m = 2 m + 1 ⇔ m 2 - 4 m - 4 = 0 ( ∆ ' = 8 ) ⇔ m = 2 ± 2 2 (thỏa mãn (*)).

Vậy  m = 2 ± 2 2 .

Chọn  A.