Giải các phương trình sau sin5x + cos5x = -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cosx.tan3x = sin5x
Điều kiện: cos3x ≠ 0. Khi đó,
(3)⇔ cosx.sin3x = cos3x.sin5x
Kết hợp với điều kiện ta được nghiệm của phương trình là:
4.
ĐKXĐ: \(2cos^2x+sinx-1\ne0\)
\(\Leftrightarrow-2sin^2x+sinx+1\ne0\Rightarrow\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)
Khi đó pt tương đương:
\(\Leftrightarrow\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(loại\right)\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)
Giải phương trình:
1) \(tanx-cotx+3cot^22x=5\)
2) \(\frac{sin5x}{sinx}=\frac{cos5x}{cosx}+2cos4x-1\)
1/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)
\(\frac{sinx}{cosx}-\frac{cosx}{sinx}+3cot^2x=5\Leftrightarrow\frac{sin^2x-cos^2x}{sinx.cosx}+3cot^2x=5\)
\(\Leftrightarrow\frac{-2cos2x}{sin2x}+3cot^22x=5\Leftrightarrow3cot^22x-2cot2x-5=0\)
\(\Rightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow...\)
b/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{sin5x}{sinx}-\frac{cos5x}{cosx}=2cos4x-1\Leftrightarrow\frac{sin5x.cosx-cos5x.sinx}{sinx.cosx}=2cos4x-1\)
\(\Leftrightarrow\frac{sin\left(5x-x\right)}{\frac{1}{2}sin2x}=2cos4x-1\Leftrightarrow\frac{2sin4x}{sin2x}=2cos4x-1\)
\(\Leftrightarrow\frac{4sin2x.cos2x}{sin2x}=2\left(2cos^22x-1\right)-1\)
\(\Leftrightarrow4cos2x=4cos^22x-3\Leftrightarrow4cos^22x-4cos2x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=\frac{3}{2}>1\left(l\right)\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow...\)
1.
\(2cos4x-3=0\)
\(\Leftrightarrow cos4x=\dfrac{3}{2}\)
Mà \(cos4x\in\left[-1;1\right]\)
\(\Rightarrow\) phương trình vô nghiệm.
2.
\(cos5x+2=0\)
\(\Leftrightarrow cos5x=-2\)
Mà \(cos5x\in\left[-1;1\right]\)
\(\Rightarrow\) phương trình vô nghiệm.
3.
\(cos2x+0,7=0\)
\(\Leftrightarrow cos2x=-\dfrac{7}{10}\)
\(\Leftrightarrow2x=\pm arccos\left(-\dfrac{7}{10}\right)+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{arccos\left(-\dfrac{7}{10}\right)}{2}+k\pi\)
4.
\(cos^22x-\dfrac{1}{4}=0\)
\(\Leftrightarrow cos^22x=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\pm\dfrac{2\pi}{3}+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
a, \(sinx-cosx=1\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)