Bài 7 : Vẽ tứ giác ABCD, biết :
A. A(-1;1), B(-1;3), C(2;3) và D(2;1) .
B. A(-2;1), B(-2;3), C(2;3) và D(2;-1) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=3\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=-1\end{matrix}\right.\)
a, Ta có \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=2:2:1:1\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
Áp dụng t/c dtsbn:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+1+2+2}=\dfrac{360^0}{6}=60^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=120^0\\\widehat{C}=60^0\\\widehat{D}=60^0\end{matrix}\right.\)
b, Vì \(\widehat{A}+\widehat{C}=120^0+60^0=180^0\) mà 2 góc này ở vị trí TCP nên AB//CD
Do đó ABCD là hình thang
Vì \(\widehat{A}=\widehat{B}=120^0\) nên ABCD là hình thang cân
A B C D
a) Theo giả thiết, ta có:
AD=AB=BCAD=AB=BC và Aˆ+Cˆ=1800A^+C^=1800
Suy ra tứ giác ABCD là hình vuông
Mà DB là đường chéo của tứ giác ABCD
=> DB là tia phân giác của góc ADC
b) Vì ABCD là hình vuông
⇒{AD=BC(gt)AB//DC
=> ABCD là hình thang cân
Vậy ...
a) Theo giả thiết, ta có:
AD=AB=BCAD=AB=BC và Aˆ+Cˆ=1800A^+C^=1800
Suy ra tứ giác ABCD là hình vuông
Mà DB là đường chéo của tứ giác ABCD
=> DB là tia phân giác của góc ADC
b) Vì ABCD là hình vuông
\(\Rightarrow\hept{\begin{cases}AD=BC\left(GT\right)\\AB//DC\end{cases}}\)
=> ABCD là hình thang cân
Vậy ...
Phần trên chưa làm xong bấm nhầm nút gửi nên làm lại
a) Ta thấy : A + B + C + D = 360°
Tự áp dụng tính chất dãy tỉ số bằng nhau ta có :
A = 144°
B = 108°
C = 72°
D = 36°
b) Vì DE , CE là phân giác ADC và ACD
=> EDC = ADE = 18°
=> BCE = ECD = 36°
Xét ∆DEC ta có :
EDC + DEC + ECD = 180°
=> DEC = 126°
Ta có : góc ngoài tại đỉnh C
=> 180° - BCD = 108°
Góc ngoài tại đỉnh D
=> 180° - ADC = 144°
Mà DF , CF là phân giác ngoài góc C , D
=> CDF = 72°
=> DCF = 54°
Xét ∆CDF ta có :
CDF + DFC + DCF = 180°
=> DFC = 44°