Trong một cuộc kiểm tra chất lương cho 370 hoc sinh, người ta đưa ra bộ đề thi gồm 10 câu hỏi khác nhau. Mỗi học sinh phải rút ra 3 trong số 10 câu hỏi đó để làm thành đề thi của mình. Chứng minh rằng phải có ít nhất 4 thí sinh cùng thi chung một đề thi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 bộ đề thi mỗi đề thi là 10 câu tương ứng với 10 x10=100 (câu hỏi)
Mỗi em 3 câu, tình huống xấu nhất là em 3 có số câu trùng nhau thì hết x100=300 (em)
Thừa ra số em là: 370-300=70 (em)
70 em này sẽ bốc vào các câu mà đã có ít nhất 3 người đã bốc. Vậy sẽ có 4 người có số câu trùng nhau.
chẳng có ai trả lời hết ,vậy thì mình trả lời luôn cho:
Ta có :
_Có 5 cách chọn câu số 1 cho đề thi
_Có 4 cách chọn câu số 2 cho đề thi
_Có 3 cách chọn câu số 3 cho đề thi
Số đề thi được lập là :
5 x 4 x 3 =60 (đề thi)
Nhưng nếu làm như vậy thì mỗi đề thi được tính đến 6 lần , chẳng hạn đề thi gồm các câu (1,2,3)sẽ trùng với các đề thi :(1,3,2);(2,1,3;(2,3,1);(3,1,2);(3,2,1)
Thực sự số đề thi là :
60 : 6 =10 (đề thi )
Ta có :31:10=3
Vậy có ít nhất 4 học sinh làm cùng đề thi
Số đề: \(C^4_{10}=210\left(đề\right)\)
Có: 750=210.3+120
=> Có ít nhất 3 em cùng đề
Ít nhất 1 câu hình học, nhiều nhất là 3 câu hình học, bởi giới hạn chỉ được bốc 3 câu hỏi
Khong gian mau: \(n\left(\Omega\right)=C^3_{15}\)
TH1: Bốc 1 câu hình học và 2 câu đại số
\(C^1_5.C^2_{10}\)
TH2: Bốc 2 câu hình học và 1 câu đại số
\(C^2_5.C^1_{10}\)
TH3: Bốc 3 câu hình học
\(C^3_5\)
\(\Rightarrow C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5=..\)
\(p\left(A\right)=\dfrac{C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5}{C^3_{15}}=...\)
Ω: "Chọn 3 câu hỏi từ 15 câu."
⇒ n(Ω) = \(C^3_{15}=455\)
A: "Chọn được ít nhất 1 câu hỏi Hình học."
⇒ \(\overline{A}\): "Không chọn được câu Hình học nào."
\(\Rightarrow n\left(\overline{A}\right)=C^3_{10}=120\)
\(\Rightarrow P\left(\overline{A}\right)=\dfrac{120}{455}=\dfrac{24}{91}\)
\(\Rightarrow P\left(A\right)=1-P\left(\overline{A}\right)=\dfrac{67}{91}\)
Bạn tham khảo nhé!
Gọi 5 câu hỏi lần lượt là a, b, c, d, e
Chọn 3 trong 5 câu hỏi, ta có số đề khác nhau là :
abc, abd, abe, acd, ace, ade
bcd, bce, bde
cde
Vậy có 10 đề khác nhau
31 : 10 dư 1
Nên ít nhất có 1 trường hợp 4 học sinh cùng đề
Trong không gian mẫu \(\Omega\) là tập hợp gồm tất cả các cặp hai bộ 3 câu hỏi, mà ở vị trí thứ nhất của cặp là bộ 3 câu hỏi thí sinh A chọn và ở vị trí thứ hai của cặp là bộ 3 câu hỏi thí sinh B chọn
Vì A cũng như B đều có \(C_{10}^3\) cách chọn 3 câu hỏi tứ 10 câu hỏi thí sinh nên theo quy tắc nhân ta có \(n\left(\Omega\right)=\left(C_{10}^3\right)^2\)
Kí hiệu X là biến cố " bộ 3 câu hỏi A chọn và bộ 3 câu hỏi B chọn là giống nhau"
Vì mỗi cách chọn 3 câu hỏi của A, B chỉ có duy nhất cách chọn 3 câu hỏi giống như A nên \(n\left(\Omega_X\right)=C_{10}^3.1=C_{10}^3\)
Vì vậy \(P\left(X\right)=\frac{n\left(\Omega_X\right)}{n\left(\Omega\right)}=\frac{C^3_{10}}{\left(C^3_{10}\right)^2}=\frac{1}{C^3_{10}}=\frac{1}{120}\)
Chọn A
Xảy ra hai trường hợp
TH1 : 2 câu lý thuyết, 1 câu bài tập có .
TH2 : 1 câu lý thuyết, 2 câu bài tập có .
Vậy có thể tạo 60 + 36 = 96A. 96 đề khác nhau.
Chọn đáp án C.
* TH1: Đề thi gồm 1 câu lý thuyết và 2 câu bài tập
Số cách tạo đề thi: C 4 1 . C 6 2 cách
* TH2: Đề thi gồm 2 câu lý thuyết và 1 câu bài tập
Số cách tạo đề thi: C 4 2 . C 6 1 cách
* KL: Số cách tạo đề thi: C 4 1 . C 6 2 + C 4 2 . C 6 1 = 96 cách
10 bộ đề thi mỗi đề thi là 10 câu tương ứng với 10 x10=100 (câu hỏi) Mỗi em 3 câu, tình huống xấu nhất là em 3 có số câu trùng nhau thì hết x100=300 (em) Thừa ra số em là: 370-300=70 (em) 70 em này sẽ bốc vào các câu mà đã có ít nhất 3 người đã bốc. Vậy sẽ có 4 người có số câu trùng nhau