K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

Khó 

28 tháng 1 2016

tim gi vay

29 tháng 6 2018

Đặt a+b=x;c+d=ya+b=x;c+d=y ta cần chứng minh :xy+4≥2(x+y)⇔(x−2)(y−2)≥0xy+4≥2(x+y)⇔(x−2)(y−2)≥0

Mặt khác ta luôn có x=a+b≥2√ab=2;y=c+d≥2√cd=2x=a+b≥2ab=2;y=c+d≥2cd=2

Như vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=d=1

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Ta có:

\((ab+cd)^2=a^2b^2+c^2d^2+2abcd\)

\(=a^2b^2+c^2d^2-2abcd+4abcd\)

\(=(ab-cd)^2+4abcd\geq 4abcd=4\)

Vậy \((ab+cd)^2\geq 4\)

\(\Rightarrow ab+cd\geq \sqrt{4}=2\) (với \(ab+cd>0\))

Vậy......

Đề bài là gì vậy bn ?

24 tháng 11 2021

D

24 tháng 11 2021

D

11 tháng 4 2016

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

31 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=m\Rightarrow a=bm;c=dm\)

Ta có : \(\dfrac{a.b}{c.d}=\dfrac{b.m.b}{d.m.d}=\dfrac{b^2.m}{d^2.m}=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bm+b\right)^2}{\left(dm+d\right)^2}=\dfrac{\left[b.\left(m+1\right)\right]^2}{\left[d.\left(m+1\right)\right]^2}=\dfrac{b^2.\left(m+1\right)^2}{d^2.\left(m+1\right)^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1) và (2) suy ra :\(\dfrac{a.b}{c.d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Vậy \(\dfrac{a.b}{c.d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) khi \(\dfrac{a}{b}=\dfrac{c}{d}\)

Đc chưa bạn . Tick cho mk nha!