K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

16 tháng 6 2018

Đặt t= ex , với x [0 ; ln4] => t [1 ;4].

Khi đó f(x) = |t2 – 4t + m| = |g(t)|.

Có g’ (t) = 2t-4 và g’ (t) =0 khi t= 2.

Ta có bảng biến thiên

Từ bảng biến thiên ta thấy 

Chọn D.

3 tháng 6 2017

7 tháng 4 2021

"Để giá trị lớn nhất của hàm số f(x) đạt giá trị nhỏ nhất" ??

4 tháng 6 2017

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra 

12 tháng 6 2018

18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

11 tháng 12 2017

Đáp án D

Xét hàm số .

;

Bảng biến thiên

Do nên suy ra .

Suy ra .

Nếu thì ,

.

Nếu thì ,

.

Do đó hoặc , do a nguyên và thuộc đoạn nên .