K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

3 tháng 10 2019

 = (x2-x+1)(x2+3x+10)+10 = P

x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0

x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0

vây P>0

29 tháng 12 2018

x^2 - x + 3/4 

= x^2 - 2.x.(1/2) + (1/2)^2 - (1/2)^2 + 3/4

= (x-1/2)^2 + 1/2 

Có (x-1/2)^2 >= 0 => (x-1/2)^2 + 1/2 >= 1/2 > 0

Vậy x^2 - x + 3/4 > 0 với mọi giá trị của x

29 tháng 12 2018

\(x^2-x+\frac{3}{4}=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{2}=\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)

Do \(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

\(\RightarrowĐPCM\)

6 tháng 10 2018

Để \(B=\frac{x^2-x+1}{2}>0\forall x\) thì ta cần chứng minh :

\(x^2-x+1>0\)

\(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)( đpcm )

6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~