K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

Chọn C

Ta có

Do 

Có 

Ta lại có  

Và 

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

7 tháng 3 2019

Ta có

Do 

Có 

Ta lại có 

và 

Khi đó

Do đó 

Chọn đáp án C.

20 tháng 1 2017

a: (SB;(ABCD))=(BS;BA)=góc SBA

b: (SO;(ABCD))=(OS;OA)=góc SOA

c: (SC;(SAD))=(SC;SD)

 

2 tháng 11 2018

Chọn D

9 tháng 12 2017

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

2 tháng 8 2019

Chọn A.

Góc giữa SC và mặt đáy bằng  45 o ⇒ S C A ^ = 45 o

Xét tam giác SAC vuông tại A, ta có

Dựng hình bình hành ACBE

Gọi H là hình chiếu của A lên mặt phẳng (SBE).

Xét hình tứ diện vuông SABE có


26 tháng 3 2017

3 tháng 12 2019

Trong tam giác SOC, kẻ OK ⊥ OS(như hình vẽ).(1)

Dễ dàng chứng minh được 

Ta tính được 

Chọn B.